Problem
You are given n
points
in the plane that are all distinct, where points[i] = [xi, yi]
. A boomerang is a tuple of points (i, j, k)
such that the distance between i
and j
equals the distance between i
and k
(the order of the tuple matters).
Return the number of boomerangs.
Example 1:
Input: points = [[0,0],[1,0],[2,0]]
Output: 2
Explanation: The two boomerangs are [[1,0],[0,0],[2,0]] and [[1,0],[2,0],[0,0]].
Example 2:
Input: points = [[1,1],[2,2],[3,3]]
Output: 2
Example 3:
Input: points = [[1,1]]
Output: 0
Constraints:
n == points.length
1 <= n <= 500
points[i].length == 2
-10^4 <= xi, yi <= 10^4
All the points are unique.
Solution (Java)
class Solution {
public int numberOfBoomerangs(int[][] points) {
HashMap<Integer, Integer> m = new HashMap<>();
int ans = 0;
for (int i = 0; i < points.length; i++) {
for (int j = 0; j < points.length; j++) {
if (i == j) {
continue;
}
int dis = dist(points[i], points[j]);
int prev = m.getOrDefault(dis, 0);
if (prev >= 1) {
ans += prev * 2;
}
m.put(dis, prev + 1);
}
m.clear();
}
return ans;
}
private int dist(int[] d1, int[] d2) {
return (d1[0] - d2[0]) * (d1[0] - d2[0]) + (d1[1] - d2[1]) * (d1[1] - d2[1]);
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).