Problem
You are given two integers m
and n
representing the dimensions of a 0-indexed m x n
grid.
You are also given a 0-indexed 2D integer matrix coordinates
, where coordinates[i] = [x, y]
indicates that the cell with coordinates [x, y]
is colored black. All cells in the grid that do not appear in coordinates
are white.
A block is defined as a 2 x 2
submatrix of the grid. More formally, a block with cell [x, y]
as its top-left corner where 0 <= x < m - 1
and 0 <= y < n - 1
contains the coordinates [x, y]
, [x + 1, y]
, [x, y + 1]
, and [x + 1, y + 1]
.
Return **a *0-indexed* integer array** arr
of size 5
such that arr[i]
is the number of blocks that contains exactly i
**black cells**.
Example 1:
Input: m = 3, n = 3, coordinates = [[0,0]]
Output: [3,1,0,0,0]
Explanation: The grid looks like this:
There is only 1 block with one black cell, and it is the block starting with cell [0,0].
The other 3 blocks start with cells [0,1], [1,0] and [1,1]. They all have zero black cells.
Thus, we return [3,1,0,0,0].
Example 2:
Input: m = 3, n = 3, coordinates = [[0,0],[1,1],[0,2]]
Output: [0,2,2,0,0]
Explanation: The grid looks like this:
There are 2 blocks with two black cells (the ones starting with cell coordinates [0,0] and [0,1]).
The other 2 blocks have starting cell coordinates of [1,0] and [1,1]. They both have 1 black cell.
Therefore, we return [0,2,2,0,0].
Constraints:
2 <= m <= 105
2 <= n <= 105
0 <= coordinates.length <= 104
coordinates[i].length == 2
0 <= coordinates[i][0] < m
0 <= coordinates[i][1] < n
- It is guaranteed that
coordinates
contains pairwise distinct coordinates.
Solution (Java)
import java.util.*;
class Solution {
public long[] countBlackBlocks(int m, int n, int[][] coordinates) {
Map<Long, Integer> countMap = new HashMap<>(); // Map to store the count of black blocks
List<Long> res = new ArrayList<>(5); // Result list to store the final counts
for (int[] coor : coordinates) {
int x = coor[0];
int y = coor[1];
for (int dx = 0; dx <= 1; dx++) {
for (int dy = 0; dy <= 1; dy++) {
if (x - dx >= 0 && y - dy >= 0 && x - dx < m - 1 && y - dy < n - 1) {
// Calculate the key for the map using the coordinates
long key = (long) (x - dx) * n + y - dy;
countMap.put(key, countMap.getOrDefault(key, 0) + 1); // Increment the count of black blocks for the key
}
}
}
}
// Initialize the result array
for (int i = 0; i < 5; i++) {
res.add(0L);
}
// Iterate over the countMap and update the result list
for (Map.Entry<Long, Integer> entry : countMap.entrySet()) {
int count = entry.getValue();
res.set(count, res.get(count) + 1); // Increment the count in the result list at the corresponding index
}
long sum = 0;
for (long count : res) {
sum += count;
}
res.set(0, 1L * (m - 1) * (n - 1) - sum); // Calculate the count of white blocks and store it at index 0
// Convert the result list to an array
long[] resultArray = new long[res.size()];
for (int i = 0; i < res.size(); i++) {
resultArray[i] = res.get(i);
}
return resultArray; // Return the final result array
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).