Problem
A positive integer is magical if it is divisible by either a
or b
.
Given the three integers n
, a
, and b
, return the nth
magical number. Since the answer may be very large, **return it modulo **10^9 + 7
.
Example 1:
Input: n = 1, a = 2, b = 3
Output: 2
Example 2:
Input: n = 4, a = 2, b = 3
Output: 6
Constraints:
1 <= n <= 10^9
2 <= a, b <= 4 * 10^4
Solution
class Solution {
private static final int MOD = 1_000_000_007;
public int nthMagicalNumber(int n, int a, int b) {
long c = lcm(a, b);
long l = 2;
long r = n * c;
long ans = r;
while (l <= r) {
long mid = l + (r - l) / 2;
long cnt = mid / a + mid / b - mid / c;
if (cnt < n) {
l = mid + 1;
} else {
ans = mid;
r = mid - 1;
}
}
return (int) (ans % MOD);
}
private long lcm(long a, long b) {
return a * b / gcd(a, b);
}
private long gcd(long a, long b) {
long t;
while (b != 0) {
t = b;
b = a % b;
a = t;
}
return a;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).