Problem
An integer x
is numerically balanced if for every digit d
in the number x
, there are exactly d
occurrences of that digit in x
.
Given an integer n
, return **the *smallest numerically balanced* number strictly greater than n
.**
Example 1:
Input: n = 1
Output: 22
Explanation:
22 is numerically balanced since:
- The digit 2 occurs 2 times.
It is also the smallest numerically balanced number strictly greater than 1.
Example 2:
Input: n = 1000
Output: 1333
Explanation:
1333 is numerically balanced since:
- The digit 1 occurs 1 time.
- The digit 3 occurs 3 times.
It is also the smallest numerically balanced number strictly greater than 1000.
Note that 1022 cannot be the answer because 0 appeared more than 0 times.
Example 3:
Input: n = 3000
Output: 3133
Explanation:
3133 is numerically balanced since:
- The digit 1 occurs 1 time.
- The digit 3 occurs 3 times.
It is also the smallest numerically balanced number strictly greater than 3000.
Constraints:
0 <= n <= 10^6
Solution (Java)
class Solution {
public int nextBeautifulNumber(int n) {
int[] arr = new int[] {0, 1, 2, 3, 4, 5, 6};
boolean[] select = new boolean[7];
int d = n == 0 ? 1 : (int) Math.log10(n) + 1;
return solve(1, n, d, 0, select, arr);
}
private int solve(int i, int n, int d, int sz, boolean[] select, int[] arr) {
if (sz > d + 1) {
return Integer.MAX_VALUE;
}
if (i == select.length) {
return sz >= d ? make(0, n, sz, select, arr) : Integer.MAX_VALUE;
}
int ans = solve(i + 1, n, d, sz, select, arr);
select[i] = true;
ans = Math.min(ans, solve(i + 1, n, d, sz + i, select, arr));
select[i] = false;
return ans;
}
private int make(int cur, int n, int end, boolean[] select, int[] arr) {
if (end == 0) {
return cur > n ? cur : Integer.MAX_VALUE;
}
int ans = Integer.MAX_VALUE;
for (int j = 1; j < arr.length; j++) {
if (!select[j] || arr[j] == 0) {
continue;
}
--arr[j];
ans = Math.min(make(10 * cur + j, n, end - 1, select, arr), ans);
++arr[j];
}
return ans;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).