Problem
You are given a network of n
nodes, labeled from 1
to n
. You are also given times
, a list of travel times as directed edges times[i] = (ui, vi, wi)
, where ui
is the source node, vi
is the target node, and wi
is the time it takes for a signal to travel from source to target.
We will send a signal from a given node k
. Return **the *minimum* time it takes for all the** n
nodes to receive the signal. If it is impossible for all the n
nodes to receive the signal, return -1
.
Example 1:
Input: times = [[2,1,1],[2,3,1],[3,4,1]], n = 4, k = 2
Output: 2
Example 2:
Input: times = [[1,2,1]], n = 2, k = 1
Output: 1
Example 3:
Input: times = [[1,2,1]], n = 2, k = 2
Output: -1
Constraints:
1 <= k <= n <= 100
1 <= times.length <= 6000
times[i].length == 3
1 <= ui, vi <= n
ui != vi
0 <= wi <= 100
All the pairs
(ui, vi)
are unique. (i.e., no multiple edges.)
Solution (Java)
class Solution {
public int networkDelayTime(int[][] times, int n, int k) {
int[][] graph = new int[n + 1][n + 1];
for (int[] g : graph) {
Arrays.fill(g, -1);
}
for (int[] t : times) {
graph[t[0]][t[1]] = t[2];
}
boolean[] visited = new boolean[n + 1];
int[] dist = new int[n + 1];
Arrays.fill(dist, Integer.MAX_VALUE);
dist[k] = 0;
Queue<Integer> spfa = new LinkedList<>();
spfa.add(k);
visited[k] = true;
while (!spfa.isEmpty()) {
int curr = spfa.poll();
visited[curr] = false;
for (int i = 1; i <= n; i++) {
if (graph[curr][i] != -1 && dist[i] > dist[curr] + graph[curr][i]) {
dist[i] = dist[curr] + graph[curr][i];
if (!visited[i]) {
spfa.add(i);
visited[i] = true;
}
}
}
}
int result = 0;
for (int i = 1; i <= n; i++) {
result = Math.max(dist[i], result);
}
return result == Integer.MAX_VALUE ? -1 : result;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).