Problem
You are given two integer arrays nums1
and nums2
of length n
.
The XOR sum of the two integer arrays is (nums1[0] XOR nums2[0]) + (nums1[1] XOR nums2[1]) + ... + (nums1[n - 1] XOR nums2[n - 1])
(0-indexed).
- For example, the XOR sum of
[1,2,3]
and[3,2,1]
is equal to(1 XOR 3) + (2 XOR 2) + (3 XOR 1) = 2 + 0 + 2 = 4
.
Rearrange the elements of nums2
such that the resulting XOR sum is minimized.
Return **the *XOR sum* after the rearrangement**.
Example 1:
Input: nums1 = [1,2], nums2 = [2,3]
Output: 2
Explanation: Rearrange nums2 so that it becomes [3,2].
The XOR sum is (1 XOR 3) + (2 XOR 2) = 2 + 0 = 2.
Example 2:
Input: nums1 = [1,0,3], nums2 = [5,3,4]
Output: 8
Explanation: Rearrange nums2 so that it becomes [5,4,3].
The XOR sum is (1 XOR 5) + (0 XOR 4) + (3 XOR 3) = 4 + 4 + 0 = 8.
Constraints:
n == nums1.length
n == nums2.length
1 <= n <= 14
0 <= nums1[i], nums2[i] <= 10^7
Solution
class Solution {
public int minimumXORSum(int[] nums1, int[] nums2) {
int l = nums1.length;
int[] dp = new int[1 << l];
Arrays.fill(dp, -1);
dp[0] = 0;
return dfs(dp.length - 1, l, nums1, nums2, dp, l);
}
private int dfs(int state, int length, int[] nums1, int[] nums2, int[] dp, int totalLength) {
if (dp[state] >= 0) {
return dp[state];
}
int min = Integer.MAX_VALUE;
int currIndex = totalLength - length;
int i = 0;
for (int index = 0; i < length; index++) {
if (((state >> index) & 1) == 1) {
int result = dfs(state ^ (1 << index), length - 1, nums1, nums2, dp, totalLength);
min = Math.min(min, (nums2[currIndex] ^ nums1[index]) + result);
i++;
}
}
dp[state] = min;
return min;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).