Problem
You are currently designing a dynamic array. You are given a 0-indexed integer array nums
, where nums[i]
is the number of elements that will be in the array at time i
. In addition, you are given an integer k
, the maximum number of times you can resize the array (to** any** size).
The size of the array at time t
, sizet
, must be at least nums[t]
because there needs to be enough space in the array to hold all the elements. The space wasted at time t
is defined as sizet - nums[t]
, and the total space wasted is the sum of the space wasted across every time t
where 0 <= t < nums.length
.
Return **the *minimum* total space wasted if you can resize the array at most** k
times.
Note: The array can have any size at the start and does** not **count towards the number of resizing operations.
Example 1:
Input: nums = [10,20], k = 0
Output: 10
Explanation: size = [20,20].
We can set the initial size to be 20.
The total wasted space is (20 - 10) + (20 - 20) = 10.
Example 2:
Input: nums = [10,20,30], k = 1
Output: 10
Explanation: size = [20,20,30].
We can set the initial size to be 20 and resize to 30 at time 2.
The total wasted space is (20 - 10) + (20 - 20) + (30 - 30) = 10.
Example 3:
Input: nums = [10,20,15,30,20], k = 2
Output: 15
Explanation: size = [10,20,20,30,30].
We can set the initial size to 10, resize to 20 at time 1, and resize to 30 at time 3.
The total wasted space is (10 - 10) + (20 - 20) + (20 - 15) + (30 - 30) + (30 - 20) = 15.
Constraints:
1 <= nums.length <= 200
1 <= nums[i] <= 10^6
0 <= k <= nums.length - 1
Solution (Java)
class Solution {
public int minSpaceWastedKResizing(int[] arr, int k) {
int n = arr.length;
k++;
int[][] dp = new int[n][k + 1];
for (int j = 1; j <= k; j++) {
for (int i = n - 1; i >= 0; i--) {
int ele = n - i;
if (j == ele) {
dp[i][j] = 0;
continue;
}
if (j == 1) {
int sum = 0;
int maxEle = -1;
for (int l = i; l < n; l++) {
maxEle = Math.max(maxEle, arr[l]);
sum += arr[l];
}
dp[i][j] = (maxEle * (n - i)) - sum;
continue;
}
int maxEle = -1;
int sum = 0;
int ans = Integer.MAX_VALUE;
for (int cut = i; cut <= n - j; cut++) {
maxEle = Math.max(maxEle, arr[cut]);
sum += arr[cut];
int recAns = dp[cut + 1][j - 1];
int myAns = (maxEle * (cut - i + 1)) - (sum);
ans = Math.min(ans, recAns + myAns);
}
dp[i][j] = ans;
}
}
return dp[0][k];
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).