Problem
You are given an integer array nums
(0-indexed). In one operation, you can choose an element of the array and increment it by 1
.
- For example, if
nums = [1,2,3]
, you can choose to incrementnums[1]
to makenums = [1,**3**,3]
.
Return **the *minimum* number of operations needed to make** nums
*strictly increasing.*
An array nums
is strictly increasing if nums[i] < nums[i+1]
for all 0 <= i < nums.length - 1
. An array of length 1
is trivially strictly increasing.
Example 1:
Input: nums = [1,1,1]
Output: 3
Explanation: You can do the following operations:
1) Increment nums[2], so nums becomes [1,1,2].
2) Increment nums[1], so nums becomes [1,2,2].
3) Increment nums[2], so nums becomes [1,2,3].
Example 2:
Input: nums = [1,5,2,4,1]
Output: 14
Example 3:
Input: nums = [8]
Output: 0
Constraints:
1 <= nums.length <= 5000
1 <= nums[i] <= 10^4
Solution (Java)
class Solution {
public int minOperations(int[] nums) {
int minsOps = 0;
for (int i = 1; i < nums.length; i++) {
if (nums[i] <= nums[i - 1]) {
minsOps += nums[i - 1] - nums[i] + 1;
nums[i] = nums[i - 1] + 1;
}
}
return minsOps;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).