Problem
You are given two integer arrays nums1
and nums2
of equal length n
and an integer k
. You can perform the following operation on nums1
:
- Choose two indexes
i
andj
and incrementnums1[i]
byk
and decrementnums1[j]
byk
. In other words,nums1[i] = nums1[i] + k
andnums1[j] = nums1[j] - k
.
nums1
is said to be equal to nums2
if for all indices i
such that 0 <= i < n
, nums1[i] == nums2[i]
.
Return **the *minimum* number of operations required to make nums1
equal to **nums2
. If it is impossible to make them equal, return -1
.
Example 1:
Input: nums1 = [4,3,1,4], nums2 = [1,3,7,1], k = 3
Output: 2
Explanation: In 2 operations, we can transform nums1 to nums2.
1st operation: i = 2, j = 0. After applying the operation, nums1 = [1,3,4,4].
2nd operation: i = 2, j = 3. After applying the operation, nums1 = [1,3,7,1].
One can prove that it is impossible to make arrays equal in fewer operations.
Example 2:
Input: nums1 = [3,8,5,2], nums2 = [2,4,1,6], k = 1
Output: -1
Explanation: It can be proved that it is impossible to make the two arrays equal.
Constraints:
n == nums1.length == nums2.length
2 <= n <= 105
0 <= nums1[i], nums2[j] <= 109
0 <= k <= 105
Solution (Java)
class Solution {
public long minOperations(int[] nums1, int[] nums2, int k) {
int n = nums1.length;
long[] diff = new long[n];
for (int i = 0; i < n; i++) {
diff[i] = nums2[i] - nums1[i];
}
if(k==0){
for(int i=0;i<n;i++)
if(diff[i]!=0)return -1;
return 0;
}
long ans = 0;
long sum=0;
for (int i = 0; i < n; i++) {
sum+=diff[i];
if (diff[i] % k != 0) {
return -1;
}
ans += Math.abs(diff[i] / k);
}
return sum==0? ans/2:-1;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).