2654. Minimum Number of Operations to Make All Array Elements Equal to 1

Difficulty:
Related Topics:
Similar Questions:

    Problem

    You are given a 0-indexed array nums consisiting of positive integers. You can do the following operation on the array any number of times:

    Return **the *minimum* number of operations to make all elements of nums equal to **1. If it is impossible, return -1.

    The gcd of two integers is the greatest common divisor of the two integers.

    Example 1:

    Input: nums = [2,6,3,4]
    Output: 4
    Explanation: We can do the following operations:
    - Choose index i = 2 and replace nums[2] with gcd(3,4) = 1. Now we have nums = [2,6,1,4].
    - Choose index i = 1 and replace nums[1] with gcd(6,1) = 1. Now we have nums = [2,1,1,4].
    - Choose index i = 0 and replace nums[0] with gcd(2,1) = 1. Now we have nums = [1,1,1,4].
    - Choose index i = 2 and replace nums[3] with gcd(1,4) = 1. Now we have nums = [1,1,1,1].
    

    Example 2:

    Input: nums = [2,10,6,14]
    Output: -1
    Explanation: It can be shown that it is impossible to make all the elements equal to 1.
    

    Constraints:

    Follow-up:

    The O(n) time complexity solution works, but could you find an O(1) constant time complexity solution?

    Solution (Java)

    class Solution {
        public int minOperations(int[] nums) {
             int n = nums.length;
            // check if there is 1 in `nums`
            int ones = 0;
            for (int num : nums) {
                if (num == 1) {
                    ones++;
                }
            }
            // if so, we can make all the other elements equal to 1 with one operation each
            // e.g. [2,6,1,4] -> [2,1,1,4] -> [1,1,1,4] -> [1,1,1,1]
            // the number of operation to make all equal to 1 is simply n - number of 1s
            if (ones > 0) {
                return n - ones;
            }
            int res = Integer.MAX_VALUE;
            // try finding the shortest subarray with a gcd equal to 1.
            for (int i = 0; i < n; i++) {
                // subarray starting from i
                int g = nums[i];
                // try each element after i
                for (int j = i + 1; j < n; j++) {
                    // to calculate gcd
                    g = gcd(g, nums[j]);
                    // if the gcd is 1
                    if (g == 1) {
                        // then we calculate the min ops
                        res = Math.min(res, j - i);
                    }
                }
            }
            // no result -> return -1
            if (res == Integer.MAX_VALUE) {
                return -1;
            }
            // otherwise, return res + n - 1
            // i.e. the min ops to turn the shortest subarray to 1 +
            //      use that 1 to convert n - 1 elements to 1
            return res + n - 1;
        }
    
            private int gcd(int a, int b) {
            if (a == 0) {
                return b;
            }
            return gcd(b % a, a);
        }
    }
    

    Explain:

    nope.

    Complexity: