Problem
You are given an integer array target
. You have an integer array initial
of the same size as target
with all elements initially zeros.
In one operation you can choose any subarray from initial
and increment each value by one.
Return **the minimum number of operations to form a *target
* array from **initial
.
The test cases are generated so that the answer fits in a 32-bit integer.
Example 1:
Input: target = [1,2,3,2,1]
Output: 3
Explanation: We need at least 3 operations to form the target array from the initial array.
[0,0,0,0,0] increment 1 from index 0 to 4 (inclusive).
[1,1,1,1,1] increment 1 from index 1 to 3 (inclusive).
[1,2,2,2,1] increment 1 at index 2.
[1,2,3,2,1] target array is formed.
Example 2:
Input: target = [3,1,1,2]
Output: 4
Explanation: [0,0,0,0] -> [1,1,1,1] -> [1,1,1,2] -> [2,1,1,2] -> [3,1,1,2]
Example 3:
Input: target = [3,1,5,4,2]
Output: 7
Explanation: [0,0,0,0,0] -> [1,1,1,1,1] -> [2,1,1,1,1] -> [3,1,1,1,1] -> [3,1,2,2,2] -> [3,1,3,3,2] -> [3,1,4,4,2] -> [3,1,5,4,2].
Constraints:
1 <= target.length <= 10^5
1 <= target[i] <= 10^5
Solution
class Solution {
public int minNumberOperations(int[] target) {
int operations = target[0];
for (int i = 1; i < target.length; i++) {
if (target[i] > target[i - 1]) {
operations += target[i] - target[i - 1];
}
}
return operations;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).