Problem
You are given an integer array nums
where the ith
bag contains nums[i]
balls. You are also given an integer maxOperations
.
You can perform the following operation at most maxOperations
times:
Take any bag of balls and divide it into two new bags with a **positive **number of balls.
- For example, a bag of
5
balls can become two new bags of1
and4
balls, or two new bags of2
and3
balls.
Your penalty is the maximum number of balls in a bag. You want to minimize your penalty after the operations.
Return the minimum possible penalty after performing the operations.
Example 1:
Input: nums = [9], maxOperations = 2
Output: 3
Explanation:
- Divide the bag with 9 balls into two bags of sizes 6 and 3. [9] -> [6,3].
- Divide the bag with 6 balls into two bags of sizes 3 and 3. [6,3] -> [3,3,3].
The bag with the most number of balls has 3 balls, so your penalty is 3 and you should return 3.
Example 2:
Input: nums = [2,4,8,2], maxOperations = 4
Output: 2
Explanation:
- Divide the bag with 8 balls into two bags of sizes 4 and 4. [2,4,8,2] -> [2,4,4,4,2].
- Divide the bag with 4 balls into two bags of sizes 2 and 2. [2,4,4,4,2] -> [2,2,2,4,4,2].
- Divide the bag with 4 balls into two bags of sizes 2 and 2. [2,2,2,4,4,2] -> [2,2,2,2,2,4,2].
- Divide the bag with 4 balls into two bags of sizes 2 and 2. [2,2,2,2,2,4,2] -> [2,2,2,2,2,2,2,2].
The bag with the most number of balls has 2 balls, so your penalty is 2 an you should return 2.
Example 3:
Input: nums = [7,17], maxOperations = 2
Output: 7
Constraints:
1 <= nums.length <= 10^5
1 <= maxOperations, nums[i] <= 10^9
Solution (Java)
class Solution {
public int minimumSize(int[] nums, int maxOperations) {
int left = 1;
int right = 1_000_000_000;
while (left < right) {
int mid = left + (right - left) / 2;
if (operations(nums, mid) > maxOperations) {
left = mid + 1;
} else {
right = mid;
}
}
return left;
}
private int operations(int[] nums, int mid) {
int operations = 0;
for (int num : nums) {
operations += (num - 1) / mid;
}
return operations;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).