Problem
You are given an integer array nums
and an integer k
. You are asked to distribute this array into k
subsets of equal size such that there are no two equal elements in the same subset.
A subset's incompatibility is the difference between the maximum and minimum elements in that array.
Return **the *minimum possible sum of incompatibilities* of the **k
*subsets after distributing the array optimally, or return -1
if it is not possible.*
A subset is a group integers that appear in the array with no particular order.
Example 1:
Input: nums = [1,2,1,4], k = 2
Output: 4
Explanation: The optimal distribution of subsets is [1,2] and [1,4].
The incompatibility is (2-1) + (4-1) = 4.
Note that [1,1] and [2,4] would result in a smaller sum, but the first subset contains 2 equal elements.
Example 2:
Input: nums = [6,3,8,1,3,1,2,2], k = 4
Output: 6
Explanation: The optimal distribution of subsets is [1,2], [2,3], [6,8], and [1,3].
The incompatibility is (2-1) + (3-2) + (8-6) + (3-1) = 6.
Example 3:
Input: nums = [5,3,3,6,3,3], k = 3
Output: -1
Explanation: It is impossible to distribute nums into 3 subsets where no two elements are equal in the same subset.
Constraints:
1 <= k <= nums.length <= 16
nums.length
is divisible byk
1 <= nums[i] <= nums.length
Solution
class Solution {
private static class Node {
boolean[] visited;
int size;
int min;
int max;
Node() {
visited = new boolean[17];
min = 20;
max = 0;
size = 0;
}
}
private Node[] nodes;
private int size;
private int result = 1_000_000;
private int currentSum;
public int minimumIncompatibility(int[] nums, int k) {
size = nums.length / k;
nodes = new Node[k];
for (int i = 0; i < k; ++i) {
nodes[i] = new Node();
}
Arrays.sort(nums);
currentSum = 0;
solve(nums, 0);
return result == 1_000_000 ? -1 : result;
}
private void solve(int[] nums, int idx) {
if (idx == nums.length) {
result = currentSum;
return;
}
int minSize = size;
int prevMin;
int prevMax;
int diff;
for (Node node : nodes) {
if (node.size == minSize || node.visited[nums[idx]]) {
continue;
}
minSize = node.size;
prevMin = node.min;
prevMax = node.max;
diff = prevMax - prevMin;
node.min = Math.min(node.min, nums[idx]);
node.max = Math.max(node.max, nums[idx]);
node.size++;
node.visited[nums[idx]] = true;
if (prevMin == 20) {
currentSum += node.max - node.min;
} else {
currentSum += node.max - node.min - diff;
}
if (currentSum < result) {
solve(nums, idx + 1);
}
if (prevMin == 20) {
currentSum -= node.max - node.min;
} else {
currentSum -= node.max - node.min - diff;
}
node.visited[nums[idx]] = false;
node.size--;
node.min = prevMin;
node.max = prevMax;
}
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).