Problem
A gene string can be represented by an 8-character long string, with choices from 'A'
, 'C'
, 'G'
, and 'T'
.
Suppose we need to investigate a mutation from a gene string start
to a gene string end
where one mutation is defined as one single character changed in the gene string.
- For example,
"AACCGGTT" --> "AACCGGTA"
is one mutation.
There is also a gene bank bank
that records all the valid gene mutations. A gene must be in bank
to make it a valid gene string.
Given the two gene strings start
and end
and the gene bank bank
, return **the minimum number of mutations needed to mutate from *start
* to **end
. If there is no such a mutation, return -1
.
Note that the starting point is assumed to be valid, so it might not be included in the bank.
Example 1:
Input: start = "AACCGGTT", end = "AACCGGTA", bank = ["AACCGGTA"]
Output: 1
Example 2:
Input: start = "AACCGGTT", end = "AAACGGTA", bank = ["AACCGGTA","AACCGCTA","AAACGGTA"]
Output: 2
Example 3:
Input: start = "AAAAACCC", end = "AACCCCCC", bank = ["AAAACCCC","AAACCCCC","AACCCCCC"]
Output: 3
Constraints:
start.length == 8
end.length == 8
0 <= bank.length <= 10
bank[i].length == 8
start
,end
, andbank[i]
consist of only the characters['A', 'C', 'G', 'T']
.
Solution (Java)
import java.util.ArrayList;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
import java.util.Set;
public class Solution {
private List<String> isInBank(Set<String> set, String cur) {
List<String> res = new ArrayList<>();
for (String each : set) {
int diff = 0;
for (int i = 0; i < each.length(); i++) {
if (each.charAt(i) != cur.charAt(i)) {
diff++;
if (diff > 1) {
break;
}
}
}
if (diff == 1) {
res.add(each);
}
}
return res;
}
public int minMutation(String start, String end, String[] bank) {
Set<String> set = new HashSet<>();
for (String s : bank) {
set.add(s);
}
Queue<String> queue = new LinkedList<>();
queue.offer(start);
int step = 0;
while (!queue.isEmpty()) {
int curSize = queue.size();
while (curSize-- > 0) {
String cur = queue.poll();
if (cur.equals(end)) {
return step;
}
for (String next : isInBank(set, cur)) {
queue.offer(next);
set.remove(next);
}
}
step++;
}
return -1;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).