Problem
Given an integer array nums
(0-indexed) and two integers target
and start
, find an index i
such that nums[i] == target
and abs(i - start)
is minimized. Note that abs(x)
is the absolute value of x
.
Return abs(i - start)
.
It is guaranteed that target
exists in nums
.
Example 1:
Input: nums = [1,2,3,4,5], target = 5, start = 3
Output: 1
Explanation: nums[4] = 5 is the only value equal to target, so the answer is abs(4 - 3) = 1.
Example 2:
Input: nums = [1], target = 1, start = 0
Output: 0
Explanation: nums[0] = 1 is the only value equal to target, so the answer is abs(0 - 0) = 0.
Example 3:
Input: nums = [1,1,1,1,1,1,1,1,1,1], target = 1, start = 0
Output: 0
Explanation: Every value of nums is 1, but nums[0] minimizes abs(i - start), which is abs(0 - 0) = 0.
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 10^4
0 <= start < nums.length
target
is innums
.
Solution (Java)
class Solution {
public int getMinDistance(int[] nums, int target, int start) {
int result = 0;
int minDiff = Integer.MAX_VALUE;
for (int i = 0; i < nums.length; i++) {
if (nums[i] == target && Math.abs(start - i) < minDiff) {
minDiff = Math.abs(start - i);
result = minDiff;
}
}
return result;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).