Problem
You are given two positive integer arrays nums
and numsDivide
. You can delete any number of elements from nums
.
Return **the *minimum* number of deletions such that the smallest element in nums
divides all the elements of **numsDivide
. If this is not possible, return -1
.
Note that an integer x
divides y
if y % x == 0
.
Example 1:
Input: nums = [2,3,2,4,3], numsDivide = [9,6,9,3,15]
Output: 2
Explanation:
The smallest element in [2,3,2,4,3] is 2, which does not divide all the elements of numsDivide.
We use 2 deletions to delete the elements in nums that are equal to 2 which makes nums = [3,4,3].
The smallest element in [3,4,3] is 3, which divides all the elements of numsDivide.
It can be shown that 2 is the minimum number of deletions needed.
Example 2:
Input: nums = [4,3,6], numsDivide = [8,2,6,10]
Output: -1
Explanation:
We want the smallest element in nums to divide all the elements of numsDivide.
There is no way to delete elements from nums to allow this.
Constraints:
1 <= nums.length, numsDivide.length <= 10^5
1 <= nums[i], numsDivide[i] <= 10^9
Solution
class Solution {
public int minOperations(int[] nums, int[] numsDivide) {
int g = numsDivide[0];
for (int i : numsDivide) {
g = gcd(g, i);
}
int minOp = 0;
int smallest = Integer.MAX_VALUE;
for (int num : nums) {
if (g % num == 0) {
smallest = Math.min(smallest, num);
}
}
for (int num : nums) {
if (num < smallest) {
++minOp;
}
}
return smallest == Integer.MAX_VALUE ? -1 : minOp;
}
private int gcd(int a, int b) {
while (b > 0) {
int tmp = a;
a = b;
b = tmp % b;
}
return a;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).