Problem
You are given an array of points in the X-Y plane points
where points[i] = [xi, yi]
.
Return the minimum area of a rectangle formed from these points, with sides parallel to the X and Y axes. If there is not any such rectangle, return 0
.
Example 1:
Input: points = [[1,1],[1,3],[3,1],[3,3],[2,2]]
Output: 4
Example 2:
Input: points = [[1,1],[1,3],[3,1],[3,3],[4,1],[4,3]]
Output: 2
Constraints:
1 <= points.length <= 500
points[i].length == 2
0 <= xi, yi <= 4 * 10^4
All the given points are unique.
Solution (Java)
class Solution {
public int minAreaRect(int[][] points) {
if (points.length < 4) {
return 0;
}
Map<Integer, Set<Integer>> map = new HashMap<>();
for (int[] p : points) {
map.putIfAbsent(p[0], new HashSet<>());
map.get(p[0]).add(p[1]);
}
Arrays.sort(
points,
(a, b) ->
(a[0] == b[0]) ? Integer.compare(a[1], b[1]) : Integer.compare(a[0], b[0]));
int min = Integer.MAX_VALUE;
for (int i = 0; i < points.length - 2; i++) {
for (int j = i + 1; j < points.length - 1; j++) {
int[] p1 = points[i];
int[] p2 = points[j];
int area = Math.abs((p1[0] - p2[0]) * (p1[1] - p2[1]));
if (area >= min || area == 0) {
continue;
}
if (map.get(p1[0]).contains(p2[1]) && map.get(p2[0]).contains(p1[1])) {
min = area;
}
}
}
return min == Integer.MAX_VALUE ? 0 : min;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).