Problem
You are given an integer array, nums
, and an integer k
. nums
comprises of only 0
's and 1
's. In one move, you can choose two adjacent indices and swap their values.
Return **the *minimum* number of moves required so that nums
has k
consecutive 1
's**.
Example 1:
Input: nums = [1,0,0,1,0,1], k = 2
Output: 1
Explanation: In 1 move, nums could be [1,0,0,0,1,1] and have 2 consecutive 1's.
Example 2:
Input: nums = [1,0,0,0,0,0,1,1], k = 3
Output: 5
Explanation: In 5 moves, the leftmost 1 can be shifted right until nums = [0,0,0,0,0,1,1,1].
Example 3:
Input: nums = [1,1,0,1], k = 2
Output: 0
Explanation: nums already has 2 consecutive 1's.
Constraints:
1 <= nums.length <= 10^5
nums[i]
is0
or1
.1 <= k <= sum(nums)
Solution
class Solution {
public int minMoves(int[] nums, int k) {
int len = nums.length;
int cnt = 0;
long min = Long.MAX_VALUE;
for (int num : nums) {
if (num == 1) {
cnt++;
}
}
int[] arr = new int[cnt];
int idx = 0;
long[] sum = new long[cnt + 1];
for (int i = 0; i < len; i++) {
if (nums[i] == 1) {
arr[idx++] = i;
sum[idx] = sum[idx - 1] + i;
}
}
for (int i = 0; i + k - 1 < cnt; i++) {
min = Math.min(min, getSum(arr, i, i + k - 1, sum));
}
return (int) min;
}
private long getSum(int[] arr, int l, int h, long[] sum) {
int mid = l + (h - l) / 2;
int k = h - l + 1;
int radius = mid - l;
long res = sum[h + 1] - sum[mid + 1] - (sum[mid] - sum[l]) - (1 + radius) * radius;
if (k % 2 == 0) {
res = res - arr[mid] - (radius + 1);
}
return res;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).