1906. Minimum Absolute Difference Queries

Difficulty:
Related Topics:
Similar Questions:

    Problem

    The minimum absolute difference of an array a is defined as the minimum value of |a[i] - a[j]|, where 0 <= i < j < a.length and a[i] != a[j]. If all elements of a are the same, the minimum absolute difference is -1.

    You are given an integer array nums and the array queries where queries[i] = [li, ri]. For each query i, compute the minimum absolute difference of the subarray nums[li...ri] containing the elements of nums between the 0-based indices li and ri (inclusive).

    Return **an *array* **ans *where* ans[i] is the answer to the ith query.

    A subarray is a contiguous sequence of elements in an array.

    The value of |x| is defined as:

      Example 1:

    Input: nums = [1,3,4,8], queries = [[0,1],[1,2],[2,3],[0,3]]
    Output: [2,1,4,1]
    Explanation: The queries are processed as follows:
    - queries[0] = [0,1]: The subarray is [1,3] and the minimum absolute difference is |1-3| = 2.
    - queries[1] = [1,2]: The subarray is [3,4] and the minimum absolute difference is |3-4| = 1.
    - queries[2] = [2,3]: The subarray is [4,8] and the minimum absolute difference is |4-8| = 4.
    - queries[3] = [0,3]: The subarray is [1,3,4,8] and the minimum absolute difference is |3-4| = 1.
    

    Example 2:

    Input: nums = [4,5,2,2,7,10], queries = [[2,3],[0,2],[0,5],[3,5]]
    Output: [-1,1,1,3]
    Explanation: The queries are processed as follows:
    - queries[0] = [2,3]: The subarray is [2,2] and the minimum absolute difference is -1 because all the
      elements are the same.
    - queries[1] = [0,2]: The subarray is [4,5,2] and the minimum absolute difference is |4-5| = 1.
    - queries[2] = [0,5]: The subarray is [4,5,2,2,7,10] and the minimum absolute difference is |4-5| = 1.
    - queries[3] = [3,5]: The subarray is [2,7,10] and the minimum absolute difference is |7-10| = 3.
    

      Constraints:

    Solution (Java)

    class Solution {
        private static class SegmentTree {
            static class Node {
                BitSet bits;
                int minDiff;
            }
    
            int len;
            int[] nums;
            Node[] tree;
            static final int INF = 200;
    
            SegmentTree(int[] nums, int len) {
                this.nums = Arrays.copyOf(nums, len);
                this.len = len;
                tree = new Node[4 * len];
                buildTree(0, len - 1, 0);
            }
    
            private void buildTree(int i, int j, int ti) {
                if (i <= j) {
                    if (i == j) {
                        Node node = new Node();
                        node.bits = new BitSet(101);
                        node.bits.set(nums[i]);
                        node.minDiff = INF;
                        tree[ti] = node;
                    } else {
                        int mid = i + (j - i) / 2;
                        buildTree(i, mid, 2 * ti + 1);
                        buildTree(mid + 1, j, 2 * ti + 2);
                        tree[ti] = combineNodes(tree[2 * ti + 1], tree[2 * ti + 2]);
                    }
                }
            }
    
            private Node combineNodes(Node n1, Node n2) {
                Node node = new Node();
                if (n1.minDiff == 1 || n2.minDiff == 1) {
                    node.minDiff = 1;
                } else {
                    node.bits = new BitSet(101);
                    node.bits.or(n1.bits);
                    node.bits.or(n2.bits);
                    node.minDiff = findMinDiff(node.bits);
                }
                return node;
            }
    
            private int findMinDiff(BitSet bits) {
                // minimum value of number is 1.
                int first = bits.nextSetBit(1);
                int minDiff = INF;
                while (first != -1) {
                    int next = bits.nextSetBit(first + 1);
                    if (next != -1) {
                        minDiff = Math.min(minDiff, next - first);
                        if (minDiff == 1) {
                            break;
                        }
                    }
                    first = next;
                }
                return minDiff;
            }
    
            private int findMinAbsDiff(int start, int end, int i, int j, int ti) {
                Node node = findMinAbsDiff2(start, end, i, j, ti);
                return node.minDiff == INF ? -1 : node.minDiff;
            }
    
            private Node findMinAbsDiff2(int start, int end, int i, int j, int ti) {
                if (i == start && j == end) {
                    return tree[ti];
                }
                int mid = i + (j - i) / 2;
                if (end <= mid) {
                    return findMinAbsDiff2(start, end, i, mid, 2 * ti + 1);
                } else if (start >= mid + 1) {
                    return findMinAbsDiff2(start, end, mid + 1, j, 2 * ti + 2);
                } else {
                    Node left = findMinAbsDiff2(start, mid, i, mid, 2 * ti + 1);
                    Node right = findMinAbsDiff2(mid + 1, end, mid + 1, j, 2 * ti + 2);
                    return combineNodes(left, right);
                }
            }
        }
    
        public int[] minDifference(int[] nums, int[][] queries) {
            int len = nums.length;
            int qlen = queries.length;
            SegmentTree st = new SegmentTree(nums, len);
            int[] answer = new int[qlen];
            for (int i = 0; i < qlen; ++i) {
                answer[i] = st.findMinAbsDiff(queries[i][0], queries[i][1], 0, len - 1, 0);
            }
            return answer;
        }
    }
    

    Explain:

    nope.

    Complexity: