Problem
You are given a 0-indexed integer array nums
and an integer p
. Find p
pairs of indices of nums
such that the maximum difference amongst all the pairs is minimized. Also, ensure no index appears more than once amongst the p
pairs.
Note that for a pair of elements at the index i
and j
, the difference of this pair is |nums[i] - nums[j]|
, where |x|
represents the absolute value of x
.
Return **the **minimum** maximum difference among all **p
**pairs.** We define the maximum of an empty set to be zero.
Example 1:
Input: nums = [10,1,2,7,1,3], p = 2
Output: 1
Explanation: The first pair is formed from the indices 1 and 4, and the second pair is formed from the indices 2 and 5.
The maximum difference is max(|nums[1] - nums[4]|, |nums[2] - nums[5]|) = max(0, 1) = 1. Therefore, we return 1.
Example 2:
Input: nums = [4,2,1,2], p = 1
Output: 0
Explanation: Let the indices 1 and 3 form a pair. The difference of that pair is |2 - 2| = 0, which is the minimum we can attain.
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 109
0 <= p <= (nums.length)/2
Solution (Java)
public class Solution {
public int minimizeMax(int[] nums, int p) {
Arrays.sort(nums);
int left = 0, right = nums[nums.length - 1] - nums[0];
while (left < right) {
int mid = (left + right) / 2;
if (can_form_pairs(nums, mid, p)) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
private boolean can_form_pairs(int[] nums, int mid, int p) {
int count = 0;
for (int i = 0; i < nums.length - 1 && count < p;) {
if (nums[i+1] - nums[i] <= mid) {
count++;
i += 2;
} else {
i++;
}
}
return count >= p;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).