Problem
You are given an array points
representing integer coordinates of some points on a 2D-plane, where points[i] = [xi, yi]
.
The cost of connecting two points [xi, yi]
and [xj, yj]
is the manhattan distance between them: |xi - xj| + |yi - yj|
, where |val|
denotes the absolute value of val
.
Return the minimum cost to make all points connected. All points are connected if there is exactly one simple path between any two points.
Example 1:
Input: points = [[0,0],[2,2],[3,10],[5,2],[7,0]]
Output: 20
Explanation:
We can connect the points as shown above to get the minimum cost of 20.
Notice that there is a unique path between every pair of points.
Example 2:
Input: points = [[3,12],[-2,5],[-4,1]]
Output: 18
Constraints:
1 <= points.length <= 1000
-10^6 <= xi, yi <= 10^6
All pairs
(xi, yi)
are distinct.
Solution (Java)
class Solution {
public int minCostConnectPoints(int[][] points) {
int v = points.length;
if (v == 2) {
return getDistance(points[0], points[1]);
}
PriorityQueue<Pair> pq = new PriorityQueue<>(v, new Pair());
boolean[] mst = new boolean[v];
int[] dist = new int[v];
int[] parent = new int[v];
Arrays.fill(dist, 1000000);
Arrays.fill(parent, -1);
dist[0] = 0;
parent[0] = 0;
for (int i = 0; i < v; i++) {
pq.add(new Pair(dist[i], i));
}
constructMST(parent, points, mst, pq, dist);
int cost = 0;
for (int i = 1; i < parent.length; i++) {
cost += getDistance(points[parent[i]], points[i]);
}
return cost;
}
public void constructMST(
int[] parent, int[][] points, boolean[] mst, PriorityQueue<Pair> pq, int[] dist) {
if (!containsFalse(mst)) {
return;
}
Pair newPair = pq.poll();
int pointIndex = newPair.getV();
mst[pointIndex] = true;
for (int i = 0; i < parent.length; i++) {
int d = getDistance(points[pointIndex], points[i]);
if (!mst[i] && d < dist[i]) {
dist[i] = d;
pq.add(new Pair(dist[i], i));
parent[i] = pointIndex;
}
}
constructMST(parent, points, mst, pq, dist);
}
public boolean containsFalse(boolean[] mst) {
for (boolean b : mst) {
if (!b) {
return true;
}
}
return false;
}
public int getDistance(int[] p1, int[] p2) {
return Math.abs(p1[0] - p2[0]) + Math.abs(p1[1] - p2[1]);
}
private static class Pair implements Comparator<Pair> {
int dis;
int v;
public Pair() {}
public Pair(int dis, int v) {
this.dis = dis;
this.v = v;
}
public int getDis() {
return dis;
}
public int getV() {
return v;
}
@Override
public int compare(Pair p1, Pair p2) {
return p1.dis - p2.dis;
}
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).