1707. Maximum XOR With an Element From Array

Difficulty:
Related Topics:
Similar Questions:

Problem

You are given an array nums consisting of non-negative integers. You are also given a queries array, where queries[i] = [xi, mi].

The answer to the ith query is the maximum bitwise XOR value of xi and any element of nums that does not exceed mi. In other words, the answer is max(nums[j] XOR xi) for all j such that nums[j] <= mi. If all elements in nums are larger than mi, then the answer is -1.

Return **an integer array *answer* where answer.length == queries.length and answer[i] is the answer to the ith query.**

  Example 1:

Input: nums = [0,1,2,3,4], queries = [[3,1],[1,3],[5,6]]
Output: [3,3,7]
Explanation:
1) 0 and 1 are the only two integers not greater than 1. 0 XOR 3 = 3 and 1 XOR 3 = 2. The larger of the two is 3.
2) 1 XOR 2 = 3.
3) 5 XOR 2 = 7.

Example 2:

Input: nums = [5,2,4,6,6,3], queries = [[12,4],[8,1],[6,3]]
Output: [15,-1,5]

  Constraints:

Solution

class Solution {
    static class QueryComparator implements Comparator<int[]> {
        public int compare(int[] a, int[] b) {
            return Integer.compare(a[1], b[1]);
        }
    }

    static class Node {
        Node zero;
        Node one;

        public Node() {
            this.zero = null;
            this.one = null;
        }
    }

    public int[] maximizeXor(int[] nums, int[][] queries) {
        Arrays.sort(nums);
        int len = queries.length;
        int[][] queryWithIndex = new int[len][3];
        for (int i = 0; i < len; i++) {
            queryWithIndex[i][0] = queries[i][0];
            queryWithIndex[i][1] = queries[i][1];
            queryWithIndex[i][2] = i;
        }
        Arrays.sort(queryWithIndex, new QueryComparator());
        int numId = 0;
        int[] ans = new int[len];
        Node root = new Node();
        for (int i = 0; i < len; i++) {
            while (numId < nums.length && nums[numId] <= queryWithIndex[i][1]) {
                addNumToTree(nums[numId], root);
                numId++;
            }
            ans[queryWithIndex[i][2]] = maxXOR(queryWithIndex[i][0], root);
        }
        return ans;
    }

    private void addNumToTree(int num, Node node) {
        for (int i = 31; i >= 0; i--) {
            int digit = (num >> i) & 1;
            if (digit == 1) {
                if (node.one == null) {
                    node.one = new Node();
                }
                node = node.one;
            } else {
                if (node.zero == null) {
                    node.zero = new Node();
                }
                node = node.zero;
            }
        }
    }

    private int maxXOR(int num, Node node) {
        if (node.one == null && node.zero == null) {
            return -1;
        }
        int ans = 0;
        for (int i = 31; i >= 0 && node != null; i--) {
            int digit = (num >> i) & 1;
            if (digit == 1) {
                if (node.zero != null) {
                    ans += (1 << i);
                    node = node.zero;
                } else {
                    node = node.one;
                }
            } else {
                if (node.one != null) {
                    ans += (1 << i);
                    node = node.one;
                } else {
                    node = node.zero;
                }
            }
        }
        return ans;
    }
}

Explain:

nope.

Complexity: