Problem
You are given a sorted array nums
of n
non-negative integers and an integer maximumBit
. You want to perform the following query n
times:
Find a non-negative integer
k < 2maximumBit
such thatnums[0] XOR nums[1] XOR ... XOR nums[nums.length-1] XOR k
is maximized.k
is the answer to theith
query.Remove the **last **element from the current array
nums
.
Return an array answer
**, where *answer[i]
* is the answer to the ith
query**.
Example 1:
Input: nums = [0,1,1,3], maximumBit = 2
Output: [0,3,2,3]
Explanation: The queries are answered as follows:
1st query: nums = [0,1,1,3], k = 0 since 0 XOR 1 XOR 1 XOR 3 XOR 0 = 3.
2nd query: nums = [0,1,1], k = 3 since 0 XOR 1 XOR 1 XOR 3 = 3.
3rd query: nums = [0,1], k = 2 since 0 XOR 1 XOR 2 = 3.
4th query: nums = [0], k = 3 since 0 XOR 3 = 3.
Example 2:
Input: nums = [2,3,4,7], maximumBit = 3
Output: [5,2,6,5]
Explanation: The queries are answered as follows:
1st query: nums = [2,3,4,7], k = 5 since 2 XOR 3 XOR 4 XOR 7 XOR 5 = 7.
2nd query: nums = [2,3,4], k = 2 since 2 XOR 3 XOR 4 XOR 2 = 7.
3rd query: nums = [2,3], k = 6 since 2 XOR 3 XOR 6 = 7.
4th query: nums = [2], k = 5 since 2 XOR 5 = 7.
Example 3:
Input: nums = [0,1,2,2,5,7], maximumBit = 3
Output: [4,3,6,4,6,7]
Constraints:
nums.length == n
1 <= n <= 10^5
1 <= maximumBit <= 20
0 <= nums[i] < 2maximumBit
nums
is sorted in ascending order.
Solution (Java)
class Solution {
public int[] getMaximumXor(int[] nums, int maximumBit) {
int[] result = new int[nums.length];
int val = nums[0];
int target = (1 << maximumBit) - 1;
for (int i = 1; i < nums.length; i++) {
val ^= nums[i];
}
for (int i = 0; i < result.length; i++) {
result[i] = target ^ val;
val ^= nums[nums.length - i - 1];
}
return result;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).