Problem
You are given a 2D integer array tiles
where tiles[i] = [li, ri]
represents that every tile j
in the range li <= j <= ri
is colored white.
You are also given an integer carpetLen
, the length of a single carpet that can be placed anywhere.
Return **the *maximum* number of white tiles that can be covered by the carpet**.
Example 1:
Input: tiles = [[1,5],[10,11],[12,18],[20,25],[30,32]], carpetLen = 10
Output: 9
Explanation: Place the carpet starting on tile 10.
It covers 9 white tiles, so we return 9.
Note that there may be other places where the carpet covers 9 white tiles.
It can be shown that the carpet cannot cover more than 9 white tiles.
Example 2:
Input: tiles = [[10,11],[1,1]], carpetLen = 2
Output: 2
Explanation: Place the carpet starting on tile 10.
It covers 2 white tiles, so we return 2.
Constraints:
1 <= tiles.length <= 5 * 10^4
tiles[i].length == 2
1 <= li <= ri <= 10^9
1 <= carpetLen <= 10^9
The
tiles
are non-overlapping.
Solution (Java)
class Solution {
public int maximumWhiteTiles(int[][] tiles, int carpetLength) {
Arrays.sort(tiles, Comparator.comparingInt(x -> x[0]));
int currentCover = Math.min(tiles[0][1] - tiles[0][0] + 1, carpetLength);
int maxCover = currentCover;
int head = 1;
int tail = 0;
while (tail < tiles.length && head < tiles.length && maxCover < carpetLength) {
if (tiles[head][1] - tiles[tail][0] + 1 <= carpetLength) {
currentCover += tiles[head][1] - tiles[head][0] + 1;
maxCover = Math.max(maxCover, currentCover);
++head;
} else {
int possiblePartialCoverOverCurrentHead =
carpetLength - (tiles[head][0] - tiles[tail][0]);
maxCover = Math.max(maxCover, currentCover + possiblePartialCoverOverCurrentHead);
currentCover = currentCover - (tiles[tail][1] - tiles[tail][0] + 1);
++tail;
}
}
return maxCover;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).