Problem
There are n
piles of coins on a table. Each pile consists of a positive number of coins of assorted denominations.
In one move, you can choose any coin on top of any pile, remove it, and add it to your wallet.
Given a list piles
, where piles[i]
is a list of integers denoting the composition of the ith
pile from top to bottom, and a positive integer k
, return **the *maximum total value* of coins you can have in your wallet if you choose exactly** k
coins optimally.
Example 1:
Input: piles = [[1,100,3],[7,8,9]], k = 2
Output: 101
Explanation:
The above diagram shows the different ways we can choose k coins.
The maximum total we can obtain is 101.
Example 2:
Input: piles = [[100],[100],[100],[100],[100],[100],[1,1,1,1,1,1,700]], k = 7
Output: 706
Explanation:
The maximum total can be obtained if we choose all coins from the last pile.
Constraints:
n == piles.length
1 <= n <= 1000
1 <= piles[i][j] <= 10^5
1 <= k <= sum(piles[i].length) <= 2000
Solution
class Solution {
public int maxValueOfCoins(List<List<Integer>> piles, int k) {
int[] dp = new int[k + 1];
for (List<Integer> pile : piles) {
int m = pile.size();
int[] cum = new int[m + 1];
for (int i = 0; i < m; i++) {
cum[i + 1] = cum[i] + pile.get(i);
}
int[] curdp = new int[k + 1];
for (int i = 0; i <= k; i++) {
for (int j = 0; j <= m && i + j <= k; j++) {
curdp[i + j] = Math.max(curdp[i + j], dp[i] + cum[j]);
}
}
dp = curdp;
}
return dp[k];
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).