Problem
You are given an integer array nums
and an integer k
. Find the maximum subarray sum of all the subarrays of nums
that meet the following conditions:
The length of the subarray is
k
, andAll the elements of the subarray are distinct.
Return the maximum subarray sum of all the subarrays that meet the conditions. If no subarray meets the conditions, return 0
.
**A *subarray* is a contiguous non-empty sequence of elements within an array.**
Example 1:
Input: nums = [1,5,4,2,9,9,9], k = 3
Output: 15
Explanation: The subarrays of nums with length 3 are:
- [1,5,4] which meets the requirements and has a sum of 10.
- [5,4,2] which meets the requirements and has a sum of 11.
- [4,2,9] which meets the requirements and has a sum of 15.
- [2,9,9] which does not meet the requirements because the element 9 is repeated.
- [9,9,9] which does not meet the requirements because the element 9 is repeated.
We return 15 because it is the maximum subarray sum of all the subarrays that meet the conditions
Example 2:
Input: nums = [4,4,4], k = 3
Output: 0
Explanation: The subarrays of nums with length 3 are:
- [4,4,4] which does not meet the requirements because the element 4 is repeated.
We return 0 because no subarrays meet the conditions.
Constraints:
1 <= k <= nums.length <= 105
1 <= nums[i] <= 105
Solution (Java)
class Solution {
public long maximumSubarraySum(int[] nums, int k) {
long max=-1;
long curr=0;
HashMap<Integer,Integer> map=new HashMap<>();
for(int i=0;i<k;i++){
curr+=nums[i];
if(map.containsKey(nums[i])){
max=0;
}
map.put(nums[i],map.getOrDefault(nums[i],0)+1);
}
max=max==0?0:curr;
for(int i=k;i<nums.length;i++){
curr=curr-nums[i-k];
map.put(nums[i-k],map.get(nums[i-k])-1);
if(map.get(nums[i-k])==0){
map.remove(nums[i-k]);
}
curr+=nums[i];
if(!map.containsKey(nums[i])){
map.put(nums[i],1);
if(map.size()==k){
max=Math.max(curr,max);
}
}
else{
map.put(nums[i],map.getOrDefault(nums[i],0)+1);
}
}
return max;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).