Problem
We have an array of integers, nums
, and an array of requests
where requests[i] = [starti, endi]
. The ith
request asks for the sum of nums[starti] + nums[starti + 1] + ... + nums[endi - 1] + nums[endi]
. Both starti
and endi
are 0-indexed.
Return **the maximum total sum of all requests *among all permutations* of** nums
.
Since the answer may be too large, return it modulo 10^9 + 7
.
Example 1:
Input: nums = [1,2,3,4,5], requests = [[1,3],[0,1]]
Output: 19
Explanation: One permutation of nums is [2,1,3,4,5] with the following result:
requests[0] -> nums[1] + nums[2] + nums[3] = 1 + 3 + 4 = 8
requests[1] -> nums[0] + nums[1] = 2 + 1 = 3
Total sum: 8 + 3 = 11.
A permutation with a higher total sum is [3,5,4,2,1] with the following result:
requests[0] -> nums[1] + nums[2] + nums[3] = 5 + 4 + 2 = 11
requests[1] -> nums[0] + nums[1] = 3 + 5 = 8
Total sum: 11 + 8 = 19, which is the best that you can do.
Example 2:
Input: nums = [1,2,3,4,5,6], requests = [[0,1]]
Output: 11
Explanation: A permutation with the max total sum is [6,5,4,3,2,1] with request sums [11].
Example 3:
Input: nums = [1,2,3,4,5,10], requests = [[0,2],[1,3],[1,1]]
Output: 47
Explanation: A permutation with the max total sum is [4,10,5,3,2,1] with request sums [19,18,10].
Constraints:
n == nums.length
1 <= n <= 10^5
0 <= nums[i] <= 10^5
1 <= requests.length <= 10^5
requests[i].length == 2
0 <= starti <= endi < n
Solution (Java)
class Solution {
public int maxSumRangeQuery(int[] nums, int[][] requests) {
Arrays.sort(nums);
int l = nums.length;
int[] tempArr = new int[l];
// requests[i][0] incrementing index element by 1 and for requests[i][1]+1 decrementing by 1
// this will help me get the freq of occurance of each index of array 'nums' in
// all 'requests' intervals when I compute the sum array of tempArr.
for (int[] request : requests) {
int a = request[0];
int b = request[1] + 1;
tempArr[a]++;
if (b < l) {
tempArr[b]--;
}
}
int prev = 0;
for (int i = 0; i < l; i++) {
tempArr[i] += prev;
prev = tempArr[i];
}
Arrays.sort(tempArr);
int index = l - 1;
long ans = 0;
while (index >= 0) {
if (tempArr[index] == 0) {
break;
}
long x = tempArr[index] % 1000000007;
long y = nums[index] % 1000000007;
index--;
ans += x * y;
}
return (int) (ans % 1000000007);
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).