1589. Maximum Sum Obtained of Any Permutation

Difficulty:
Related Topics:
Similar Questions:

    Problem

    We have an array of integers, nums, and an array of requests where requests[i] = [starti, endi]. The ith request asks for the sum of nums[starti] + nums[starti + 1] + ... + nums[endi - 1] + nums[endi]. Both starti and endi are 0-indexed.

    Return **the maximum total sum of all requests *among all permutations* of** nums.

    Since the answer may be too large, return it modulo 10^9 + 7.

      Example 1:

    Input: nums = [1,2,3,4,5], requests = [[1,3],[0,1]]
    Output: 19
    Explanation: One permutation of nums is [2,1,3,4,5] with the following result: 
    requests[0] -> nums[1] + nums[2] + nums[3] = 1 + 3 + 4 = 8
    requests[1] -> nums[0] + nums[1] = 2 + 1 = 3
    Total sum: 8 + 3 = 11.
    A permutation with a higher total sum is [3,5,4,2,1] with the following result:
    requests[0] -> nums[1] + nums[2] + nums[3] = 5 + 4 + 2 = 11
    requests[1] -> nums[0] + nums[1] = 3 + 5  = 8
    Total sum: 11 + 8 = 19, which is the best that you can do.
    

    Example 2:

    Input: nums = [1,2,3,4,5,6], requests = [[0,1]]
    Output: 11
    Explanation: A permutation with the max total sum is [6,5,4,3,2,1] with request sums [11].
    

    Example 3:

    Input: nums = [1,2,3,4,5,10], requests = [[0,2],[1,3],[1,1]]
    Output: 47
    Explanation: A permutation with the max total sum is [4,10,5,3,2,1] with request sums [19,18,10].
    

      Constraints:

    Solution (Java)

    class Solution {
        public int maxSumRangeQuery(int[] nums, int[][] requests) {
            Arrays.sort(nums);
            int l = nums.length;
            int[] tempArr = new int[l];
            // requests[i][0] incrementing index element by 1 and for requests[i][1]+1 decrementing by 1
            // this will help me get the freq of occurance of each index of array 'nums' in
            // all 'requests' intervals when I compute the sum array of tempArr.
            for (int[] request : requests) {
                int a = request[0];
                int b = request[1] + 1;
                tempArr[a]++;
                if (b < l) {
                    tempArr[b]--;
                }
            }
            int prev = 0;
            for (int i = 0; i < l; i++) {
                tempArr[i] += prev;
                prev = tempArr[i];
            }
            Arrays.sort(tempArr);
            int index = l - 1;
            long ans = 0;
            while (index >= 0) {
                if (tempArr[index] == 0) {
                    break;
                }
                long x = tempArr[index] % 1000000007;
                long y = nums[index] % 1000000007;
                index--;
                ans += x * y;
            }
            return (int) (ans % 1000000007);
        }
    }
    

    Explain:

    nope.

    Complexity: