1373. Maximum Sum BST in Binary Tree

Difficulty:
Related Topics:
Similar Questions:

    Problem

    Given a binary tree root, return **the maximum sum of all keys of *any* sub-tree which is also a Binary Search Tree (BST)**.

    Assume a BST is defined as follows:

      Example 1:

    Input: root = [1,4,3,2,4,2,5,null,null,null,null,null,null,4,6]
    Output: 20
    Explanation: Maximum sum in a valid Binary search tree is obtained in root node with key equal to 3.
    

    Example 2:

    Input: root = [4,3,null,1,2]
    Output: 2
    Explanation: Maximum sum in a valid Binary search tree is obtained in a single root node with key equal to 2.
    

    Example 3:

    Input: root = [-4,-2,-5]
    Output: 0
    Explanation: All values are negatives. Return an empty BST.
    

      Constraints:

    Solution

    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public int maxSumBST(TreeNode root) {
            IsBST temp = checkBST(root);
            return Math.max(temp.maxSum, 0);
        }
    
        private static class IsBST {
            int max = Integer.MIN_VALUE;
            int min = Integer.MAX_VALUE;
            boolean isBst = true;
            int sum = 0;
            int maxSum = Integer.MIN_VALUE;
        }
    
        private IsBST checkBST(TreeNode root) {
            if (root == null) {
                return new IsBST();
            }
            IsBST lp = checkBST(root.left);
            IsBST rp = checkBST(root.right);
            IsBST mp = new IsBST();
            mp.max = Math.max(root.val, Math.max(lp.max, rp.max));
            mp.min = Math.min(root.val, Math.min(lp.min, rp.min));
            mp.sum = lp.sum + rp.sum + root.val;
            boolean check = root.val > lp.max && root.val < rp.min;
            if (lp.isBst && rp.isBst && check) {
                mp.isBst = true;
                int tempMax = Math.max(mp.sum, Math.max(lp.sum, rp.sum));
                mp.maxSum = Math.max(tempMax, Math.max(lp.maxSum, rp.maxSum));
            } else {
                mp.isBst = false;
                mp.maxSum = Math.max(lp.maxSum, rp.maxSum);
            }
            return mp;
        }
    }
    

    Explain:

    nope.

    Complexity: