Problem
You are given two 0-indexed integer arrays nums1
and nums2
of equal length n
and a positive integer k
. You must choose a subsequence of indices from nums1
of length k
.
For chosen indices i0
, i1
, …, ik - 1
, your score is defined as:
The sum of the selected elements from
nums1
multiplied with the minimum of the selected elements fromnums2
.It can defined simply as:
(nums1[i0] + nums1[i1] +...+ nums1[ik - 1]) * min(nums2[i0] , nums2[i1], ... ,nums2[ik - 1])
.
Return **the *maximum* possible score.**
A subsequence of indices of an array is a set that can be derived from the set {0, 1, ..., n-1}
by deleting some or no elements.
Example 1:
Input: nums1 = [1,3,3,2], nums2 = [2,1,3,4], k = 3
Output: 12
Explanation:
The four possible subsequence scores are:
- We choose the indices 0, 1, and 2 with score = (1+3+3) * min(2,1,3) = 7.
- We choose the indices 0, 1, and 3 with score = (1+3+2) * min(2,1,4) = 6.
- We choose the indices 0, 2, and 3 with score = (1+3+2) * min(2,3,4) = 12.
- We choose the indices 1, 2, and 3 with score = (3+3+2) * min(1,3,4) = 8.
Therefore, we return the max score, which is 12.
Example 2:
Input: nums1 = [4,2,3,1,1], nums2 = [7,5,10,9,6], k = 1
Output: 30
Explanation:
Choosing index 2 is optimal: nums1[2] * nums2[2] = 3 * 10 = 30 is the maximum possible score.
Constraints:
n == nums1.length == nums2.length
1 <= n <= 105
0 <= nums1[i], nums2[j] <= 105
1 <= k <= n
Solution (Java)
class Solution {
public long maxScore(int[] speed, int[] efficiency, int k) {
int n = speed.length;
int[][] ess = new int[n][2];
for (int i = 0; i < n; ++i)
ess[i] = new int[] {efficiency[i], speed[i]};
Arrays.sort(ess, (a, b) -> b[0] - a[0]);
PriorityQueue<Integer> pq = new PriorityQueue<>(k, (a, b) -> a - b);
long res = 0, sumS = 0;
for (int[] es : ess) {
pq.add(es[1]);
sumS = (sumS + es[1]);
if (pq.size() > k) sumS -= pq.poll();
if (pq.size() == k) res = Math.max(res, (sumS * es[0]));
}
return res;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).