Problem
You are given two 0-indexed integer arrays nums1
and nums2
, both of length n
.
You can choose two integers left
and right
where 0 <= left <= right < n
and swap the subarray nums1[left...right]
with the subarray nums2[left...right]
.
- For example, if
nums1 = [1,2,3,4,5]
andnums2 = [11,12,13,14,15]
and you chooseleft = 1
andright = 2
,nums1
becomes[1,**12,13**,4,5]
andnums2
becomes[11,**2,3**,14,15]
.
You may choose to apply the mentioned operation once or not do anything.
The score of the arrays is the maximum of sum(nums1)
and sum(nums2)
, where sum(arr)
is the sum of all the elements in the array arr
.
Return **the *maximum possible score***.
A subarray is a contiguous sequence of elements within an array. arr[left...right]
denotes the subarray that contains the elements of nums
between indices left
and right
(inclusive).
Example 1:
Input: nums1 = [60,60,60], nums2 = [10,90,10]
Output: 210
Explanation: Choosing left = 1 and right = 1, we have nums1 = [60,90,60] and nums2 = [10,60,10].
The score is max(sum(nums1), sum(nums2)) = max(210, 80) = 210.
Example 2:
Input: nums1 = [20,40,20,70,30], nums2 = [50,20,50,40,20]
Output: 220
Explanation: Choosing left = 3, right = 4, we have nums1 = [20,40,20,40,20] and nums2 = [50,20,50,70,30].
The score is max(sum(nums1), sum(nums2)) = max(140, 220) = 220.
Example 3:
Input: nums1 = [7,11,13], nums2 = [1,1,1]
Output: 31
Explanation: We choose not to swap any subarray.
The score is max(sum(nums1), sum(nums2)) = max(31, 3) = 31.
Constraints:
n == nums1.length == nums2.length
1 <= n <= 10^5
1 <= nums1[i], nums2[i] <= 10^4
Solution
class Solution {
public int maximumsSplicedArray(int[] nums1, int[] nums2) {
int sum1 = 0;
int sum2 = 0;
int n = nums1.length;
for (int num : nums1) {
sum1 += num;
}
for (int num : nums2) {
sum2 += num;
}
if (sum2 > sum1) {
int temp = sum2;
sum2 = sum1;
sum1 = temp;
int[] temparr = nums2;
nums2 = nums1;
nums1 = temparr;
}
// now sum1>=sum2
// maxEndingHere denotes the maximum sum subarray ending at current index(ie. element at
// current index has to be included)
// minEndingHere denotes the minimum sum subarray ending at current index
int maxEndingHere;
int minEndingHere;
int maxSoFar;
int minSoFar;
int currEle;
maxEndingHere = minEndingHere = maxSoFar = minSoFar = nums2[0] - nums1[0];
for (int i = 1; i < n; i++) {
currEle = nums2[i] - nums1[i];
minEndingHere += currEle;
maxEndingHere += currEle;
if (maxEndingHere < currEle) {
maxEndingHere = currEle;
}
if (minEndingHere > currEle) {
minEndingHere = currEle;
}
maxSoFar = Math.max(maxEndingHere, maxSoFar);
minSoFar = Math.min(minEndingHere, minSoFar);
}
// return the maximum of the 2 possibilities dicussed
// also keep care that maxSoFar>=0 and maxSoFar<=0
return Math.max(sum1 + Math.max(maxSoFar, 0), sum2 - Math.min(0, minSoFar));
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).