1793. Maximum Score of a Good Subarray

Difficulty:
Related Topics:
Similar Questions:

Problem

You are given an array of integers nums (0-indexed) and an integer k.

The score of a subarray (i, j) is defined as min(nums[i], nums[i+1], ..., nums[j]) * (j - i + 1). A good subarray is a subarray where i <= k <= j.

Return **the maximum possible *score* of a good subarray.**

  Example 1:

Input: nums = [1,4,3,7,4,5], k = 3
Output: 15
Explanation: The optimal subarray is (1, 5) with a score of min(4,3,7,4,5) * (5-1+1) = 3 * 5 = 15. 

Example 2:

Input: nums = [5,5,4,5,4,1,1,1], k = 0
Output: 20
Explanation: The optimal subarray is (0, 4) with a score of min(5,5,4,5,4) * (4-0+1) = 4 * 5 = 20.

  Constraints:

Solution

class Solution {
    public int maximumScore(int[] nums, int k) {
        int i = k;
        int j = k;
        int res = nums[k];
        int min = nums[k];
        boolean goLeft;
        while (i >= 1 || j < nums.length - 1) {
            // sub array [i...j] is already traversed. Either goLeft or goRight to increase the
            // sequence
            if (i == 0) {
                goLeft = false;
            } else if (j == nums.length - 1) {
                goLeft = true;
            } else {
                goLeft = nums[j + 1] <= nums[i - 1];
            }
            min = goLeft ? Math.min(min, nums[i - 1]) : Math.min(min, nums[j + 1]);
            if (goLeft) {
                while (i >= 1 && min <= nums[i - 1]) {
                    i--;
                }
            } else {
                while (j < nums.length - 1 && min <= nums[j + 1]) {
                    j++;
                }
            }
            res = Math.max(res, min * (j - i + 1));
        }
        return res;
    }
}

Explain:

nope.

Complexity: