2680. Maximum OR

Difficulty:
Related Topics:
Similar Questions:

    Problem

    You are given a 0-indexed integer array nums of length n and an integer k. In an operation, you can choose an element and multiply it by 2.

    Return **the maximum possible value of **nums[0] | nums[1] | ... | nums[n - 1] **that can be obtained after applying the operation on nums at most *k* times**.

    Note that a | b denotes the bitwise or between two integers a and b.

    Example 1:

    Input: nums = [12,9], k = 1
    Output: 30
    Explanation: If we apply the operation to index 1, our new array nums will be equal to [12,18]. Thus, we return the bitwise or of 12 and 18, which is 30.
    

    Example 2:

    Input: nums = [8,1,2], k = 2
    Output: 35
    Explanation: If we apply the operation twice on index 0, we yield a new array of [32,1,2]. Thus, we return 32|1|2 = 35.
    

    Constraints:

    Solution (Java)

    class Solution {
        // normally the worst case would be 10^9 * 2^ 15, so 45 bits max but I put more just in case (so that we can handle any long)
        private static final int MAX_BITS = 63;
    
        public long maximumOr(int[] nums, int k) {
    
            // precompute the array of bits
            // originalBits[i] = how many elements in nums have bit i set to one
            int[] originalBits = new int[MAX_BITS];
            for (int num : nums) {
                for(int i = 0; num > 0; i++){
                    if(num%2 == 1) originalBits[i]++;
                    num /= 2;
                }
            }
    
            long max = 0;
            for (int num : nums) {
                int[] bits = Arrays.copyOf(originalBits, MAX_BITS);
                 for(int i = 0; num > 0; i++){
                    if(num%2 == 1){ // if ith bit set
                        // remove its old value
                        bits[i]--;
                        // add its new one
                        bits[i+k]++;
                    }
                    num /= 2;
                }
                // convert bits to a number
                long result = 0;
                for (int i = 0; i < MAX_BITS; i++) {
                    if(bits[i] > 0) result += (1L << i);
                }
                max = Math.max(result, max);
            }
    
            return max;
    
        }
    }
    

    Explain:

    nope.

    Complexity: