Problem
Given an array nums
and an integer target
, return **the maximum number of *non-empty* non-overlapping subarrays such that the sum of values in each subarray is equal to** target
.
Example 1:
Input: nums = [1,1,1,1,1], target = 2
Output: 2
Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2).
Example 2:
Input: nums = [-1,3,5,1,4,2,-9], target = 6
Output: 2
Explanation: There are 3 subarrays with sum equal to 6.
([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping.
Constraints:
1 <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4
0 <= target <= 10^6
Solution (Java)
class Solution {
public int maxNonOverlapping(int[] nums, int target) {
int culSum = 0;
int res = 0;
Map<Integer, Integer> map = new HashMap<>();
map.put(0, 0);
for (int num : nums) {
culSum += num;
if (map.containsKey(culSum - target)) {
res = Math.max(res, map.get(culSum - target) + 1);
}
map.put(culSum, res);
}
return res;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).