Problem
You are given two **non-increasing 0-indexed **integer arrays nums1
and nums2
.
A pair of indices (i, j)
, where 0 <= i < nums1.length
and 0 <= j < nums2.length
, is valid if both i <= j
and nums1[i] <= nums2[j]
. The distance of the pair is j - i
.
Return **the *maximum distance* of any valid pair (i, j)
. If there are no valid pairs, return **0
.
An array arr
is non-increasing if arr[i-1] >= arr[i]
for every 1 <= i < arr.length
.
Example 1:
Input: nums1 = [55,30,5,4,2], nums2 = [100,20,10,10,5]
Output: 2
Explanation: The valid pairs are (0,0), (2,2), (2,3), (2,4), (3,3), (3,4), and (4,4).
The maximum distance is 2 with pair (2,4).
Example 2:
Input: nums1 = [2,2,2], nums2 = [10,10,1]
Output: 1
Explanation: The valid pairs are (0,0), (0,1), and (1,1).
The maximum distance is 1 with pair (0,1).
Example 3:
Input: nums1 = [30,29,19,5], nums2 = [25,25,25,25,25]
Output: 2
Explanation: The valid pairs are (2,2), (2,3), (2,4), (3,3), and (3,4).
The maximum distance is 2 with pair (2,4).
Constraints:
1 <= nums1.length, nums2.length <= 10^5
1 <= nums1[i], nums2[j] <= 10^5
Both
nums1
andnums2
are non-increasing.
Solution (Java)
class Solution {
public int maxDistance(int[] n1, int[] n2) {
int n = n1.length;
int m = n2.length;
int po1 = 0;
int po2 = 0;
int res = 0;
while (po1 < n && po2 < m) {
if (n1[po1] > n2[po2]) {
po1++;
} else {
if (po2 != po1) {
res = Math.max(res, po2 - po1);
}
po2++;
}
}
return res;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).