Problem
Given a 0-indexed integer array nums
of size n
, find the maximum difference between nums[i]
and nums[j]
(i.e., nums[j] - nums[i]
), such that 0 <= i < j < n
and nums[i] < nums[j]
.
Return **the *maximum difference*. **If no such i
and j
exists, return -1
.
Example 1:
Input: nums = [7,1,5,4]
Output: 4
Explanation:
The maximum difference occurs with i = 1 and j = 2, nums[j] - nums[i] = 5 - 1 = 4.
Note that with i = 1 and j = 0, the difference nums[j] - nums[i] = 7 - 1 = 6, but i > j, so it is not valid.
Example 2:
Input: nums = [9,4,3,2]
Output: -1
Explanation:
There is no i and j such that i < j and nums[i] < nums[j].
Example 3:
Input: nums = [1,5,2,10]
Output: 9
Explanation:
The maximum difference occurs with i = 0 and j = 3, nums[j] - nums[i] = 10 - 1 = 9.
Constraints:
n == nums.length
2 <= n <= 1000
1 <= nums[i] <= 10^9
Solution (Java)
class Solution {
public int maximumDifference(int[] nums) {
int mini = nums[0];
int ans = -1;
for (int i = 0; i < nums.length - 1; i++) {
if (nums[i] < mini) {
mini = nums[i];
}
if (nums[i + 1] - mini > ans) {
ans = nums[i + 1] - mini;
}
}
return ans <= 0 ? -1 : ans;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).