Problem
You are given an integer array nums
. The absolute sum of a subarray [numsl, numsl+1, ..., numsr-1, numsr]
is abs(numsl + numsl+1 + ... + numsr-1 + numsr)
.
Return **the *maximum* absolute sum of any (possibly empty) subarray of **nums
.
Note that abs(x)
is defined as follows:
If
x
is a negative integer, thenabs(x) = -x
.If
x
is a non-negative integer, thenabs(x) = x
.
Example 1:
Input: nums = [1,-3,2,3,-4]
Output: 5
Explanation: The subarray [2,3] has absolute sum = abs(2+3) = abs(5) = 5.
Example 2:
Input: nums = [2,-5,1,-4,3,-2]
Output: 8
Explanation: The subarray [-5,1,-4] has absolute sum = abs(-5+1-4) = abs(-8) = 8.
Constraints:
1 <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4
Solution (Java)
class Solution {
public int maxAbsoluteSum(int[] nums) {
int min = 0;
int max = 0;
int s = 0;
for (int num : nums) {
s += num;
min = Math.min(min, s);
max = Math.max(max, s);
}
return max - min;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).