Problem
You are given nums
, an array of positive integers of size 2 * n
. You must perform n
operations on this array.
In the ith
operation (1-indexed), you will:
Choose two elements,
x
andy
.Receive a score of
i * gcd(x, y)
.Remove
x
andy
fromnums
.
Return **the maximum score you can receive after performing *n
* operations.**
The function gcd(x, y)
is the greatest common divisor of x
and y
.
Example 1:
Input: nums = [1,2]
Output: 1
Explanation: The optimal choice of operations is:
(1 * gcd(1, 2)) = 1
Example 2:
Input: nums = [3,4,6,8]
Output: 11
Explanation: The optimal choice of operations is:
(1 * gcd(3, 6)) + (2 * gcd(4, 8)) = 3 + 8 = 11
Example 3:
Input: nums = [1,2,3,4,5,6]
Output: 14
Explanation: The optimal choice of operations is:
(1 * gcd(1, 5)) + (2 * gcd(2, 4)) + (3 * gcd(3, 6)) = 1 + 4 + 9 = 14
Constraints:
1 <= n <= 7
nums.length == 2 * n
1 <= nums[i] <= 10^6
Solution
class Solution {
public int maxScore(int[] nums) {
int n = nums.length;
Integer[] memo = new Integer[1 << n];
return helper(1, 0, nums, memo);
}
private int helper(int operationNumber, int mask, int[] nums, Integer[] memo) {
int n = nums.length;
if (memo[mask] != null) {
return memo[mask];
}
if (operationNumber > n / 2) {
return 0;
}
int maxScore = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
if ((mask & (1 << i)) == 0) {
for (int j = i + 1; j < n; j++) {
if ((mask & (1 << j)) == 0) {
int score = operationNumber * gcd(nums[i], nums[j]);
int score2 =
helper(operationNumber + 1, mask | (1 << i) | (1 << j), nums, memo);
maxScore = Math.max(maxScore, score + score2);
}
}
}
}
memo[mask] = maxScore;
return maxScore;
}
private int gcd(int a, int b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).