Problem
You are given a 0-indexed integer array nums
. You are allowed to permute nums
into a new array perm
of your choosing.
We define the greatness of nums
be the number of indices 0 <= i < nums.length
for which perm[i] > nums[i]
.
Return **the *maximum* possible greatness you can achieve after permuting** nums
.
Example 1:
Input: nums = [1,3,5,2,1,3,1]
Output: 4
Explanation: One of the optimal rearrangements is perm = [2,5,1,3,3,1,1].
At indices = 0, 1, 3, and 4, perm[i] > nums[i]. Hence, we return 4.
Example 2:
Input: nums = [1,2,3,4]
Output: 3
Explanation: We can prove the optimal perm is [2,3,4,1].
At indices = 0, 1, and 2, perm[i] > nums[i]. Hence, we return 3.
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 109
Solution (Java)
class Solution {
public int maximizeGreatness(int[] nums) {
PriorityQueue<Integer> pq1 = new PriorityQueue();
PriorityQueue<Integer> pq2 = new PriorityQueue();
for(int i: nums){
pq1.add(i);
pq2.add(i);
}
int count = 0;
while(!pq2.isEmpty()){
if(pq1.peek() < pq2.peek()){
pq1.poll();
count++;
}
pq2.poll();
}
return count;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).