Problem
Given two integer arrays arr1
and arr2
, return the minimum number of operations (possibly zero) needed to make arr1
strictly increasing.
In one operation, you can choose two indices 0 <= i < arr1.length
and 0 <= j < arr2.length
and do the assignment arr1[i] = arr2[j]
.
If there is no way to make arr1
strictly increasing, return -1
.
Example 1:
Input: arr1 = [1,5,3,6,7], arr2 = [1,3,2,4]
Output: 1
Explanation: Replace 5 with 2, then arr1 = [1, 2, 3, 6, 7].
Example 2:
Input: arr1 = [1,5,3,6,7], arr2 = [4,3,1]
Output: 2
Explanation: Replace 5 with 3 and then replace 3 with 4. arr1 = [1, 3, 4, 6, 7].
Example 3:
Input: arr1 = [1,5,3,6,7], arr2 = [1,6,3,3]
Output: -1
Explanation: You can't make arr1 strictly increasing.
Constraints:
1 <= arr1.length, arr2.length <= 2000
0 <= arr1[i], arr2[i] <= 10^9
Solution
class Solution {
public int makeArrayIncreasing(int[] arr1, int[] arr2) {
Arrays.sort(arr2);
int start = 0;
for (int i = 0; i < arr2.length; i++) {
if (arr2[i] != arr2[start]) {
arr2[++start] = arr2[i];
}
}
int l2 = start + 1;
int[] dp = new int[l2 + 2];
for (int i = 0; i < arr1.length; i++) {
int noChange = dp[dp.length - 1];
if (i > 0 && (arr1[i - 1] >= arr1[i])) {
noChange = -1;
}
for (int j = dp.length - 2; j > 0; j--) {
if (arr2[j - 1] < arr1[i] && dp[j] != -1) {
noChange = noChange == -1 ? dp[j] : Math.min(noChange, dp[j]);
}
if (dp[j - 1] != -1) {
dp[j] = 1 + dp[j - 1];
} else {
dp[j] = -1;
}
if (i > 0 && arr1[i - 1] < arr2[j - 1] && dp[dp.length - 1] >= 0) {
dp[j] =
dp[j] == -1
? (dp[dp.length - 1] + 1)
: Math.min(dp[j], dp[dp.length - 1] + 1);
}
}
dp[0] = -1;
dp[dp.length - 1] = noChange;
}
int res = -1;
for (int num : dp) {
if (num != -1) {
res = res == -1 ? num : Math.min(res, num);
}
}
return res;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).