Problem
We are given hours
, a list of the number of hours worked per day for a given employee.
A day is considered to be a tiring day if and only if the number of hours worked is (strictly) greater than 8
.
A well-performing interval is an interval of days for which the number of tiring days is strictly larger than the number of non-tiring days.
Return the length of the longest well-performing interval.
Example 1:
Input: hours = [9,9,6,0,6,6,9]
Output: 3
Explanation: The longest well-performing interval is [9,9,6].
Example 2:
Input: hours = [6,6,6]
Output: 0
Constraints:
1 <= hours.length <= 10^4
0 <= hours[i] <= 16
Solution (Java)
class Solution {
public int longestWPI(int[] hours) {
int i = 0;
HashMap<Integer, Integer> map = new HashMap<>();
int sum = 0;
map.put(sum, -1);
int max = Integer.MIN_VALUE;
for (int val : hours) {
sum += (val > 8) ? 1 : -1;
if (!map.containsKey(sum)) {
map.put(sum, i);
}
if (sum > 0) {
max = i + 1;
} else if (map.containsKey(sum - 1)) {
max = Math.max(i - map.get(sum - 1), max);
}
i++;
}
if (max == Integer.MIN_VALUE) {
max = 0;
}
return max;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).