Problem
You are given the head
of a linked list containing unique integer values and an integer array nums
that is a subset of the linked list values.
Return **the number of connected components in *nums
* where two values are connected if they appear consecutively in the linked list**.
Example 1:
Input: head = [0,1,2,3], nums = [0,1,3]
Output: 2
Explanation: 0 and 1 are connected, so [0, 1] and [3] are the two connected components.
Example 2:
Input: head = [0,1,2,3,4], nums = [0,3,1,4]
Output: 2
Explanation: 0 and 1 are connected, 3 and 4 are connected, so [0, 1] and [3, 4] are the two connected components.
Constraints:
The number of nodes in the linked list is
n
.1 <= n <= 10^4
0 <= Node.val < n
All the values
Node.val
are unique.1 <= nums.length <= n
0 <= nums[i] < n
All the values of
nums
are unique.
Solution (Java)
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public int numComponents(ListNode head, int[] nums) {
HashSet<Integer> set = new HashSet<>();
for (int i : nums) {
set.add(i);
}
int result = 0;
while (head != null) {
if (set.contains(head.val)) {
while (head != null && set.contains(head.val)) {
head = head.next;
}
result++;
} else {
head = head.next;
}
}
return result;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).