Problem
You are given an integer array nums
and an integer k
. You can partition the array into at most k
non-empty adjacent subarrays. The score of a partition is the sum of the averages of each subarray.
Note that the partition must use every integer in nums
, and that the score is not necessarily an integer.
Return **the maximum *score* you can achieve of all the possible partitions**. Answers within 10-6
of the actual answer will be accepted.
Example 1:
Input: nums = [9,1,2,3,9], k = 3
Output: 20.00000
Explanation:
The best choice is to partition nums into [9], [1, 2, 3], [9]. The answer is 9 + (1 + 2 + 3) / 3 + 9 = 20.
We could have also partitioned nums into [9, 1], [2], [3, 9], for example.
That partition would lead to a score of 5 + 2 + 6 = 13, which is worse.
Example 2:
Input: nums = [1,2,3,4,5,6,7], k = 4
Output: 20.50000
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 10^4
1 <= k <= nums.length
Solution (Java)
class Solution {
public double largestSumOfAverages(int[] nums, int k) {
return helper(nums, k, 0, new Double[k + 1][nums.length]);
}
private double helper(int[] nums, int k, int idx, Double[][] memo) {
if (memo[k][idx] != null) {
return memo[k][idx];
}
double maxAvg = 0;
double sum = 0;
for (int i = idx; i <= nums.length - k; i++) {
sum += nums[i];
if (k - 1 > 0) {
maxAvg = Math.max(maxAvg, (sum / (i - idx + 1)) + helper(nums, k - 1, i + 1, memo));
} else if (i == nums.length - 1) {
maxAvg = Math.max(maxAvg, sum / (i - idx + 1));
}
}
memo[k][idx] = maxAvg;
return maxAvg;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).