Problem
Given a set of distinct positive integers nums
, return the largest subset answer
such that every pair (answer[i], answer[j])
of elements in this subset satisfies:
answer[i] % answer[j] == 0
, oranswer[j] % answer[i] == 0
If there are multiple solutions, return any of them.
Example 1:
Input: nums = [1,2,3]
Output: [1,2]
Explanation: [1,3] is also accepted.
Example 2:
Input: nums = [1,2,4,8]
Output: [1,2,4,8]
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 2 * 10^9
All the integers in
nums
are unique.
Solution
class Solution {
// Helper class containing value and an arraylist
private static class Helper {
int val;
List<Integer> al;
Helper(int val) {
this.val = val;
al = new ArrayList<>();
}
}
public List<Integer> largestDivisibleSubset(int[] nums) {
// Initializing Helper type array
Helper[] dp = new Helper[nums.length];
// Sorting given array
Arrays.sort(nums);
// max variable will keep track size of Longest Divisible Subset
int max = 0;
// index variable will keep track the index at which dp contains Longest Divisible Subset
int index = 0;
dp[0] = new Helper(1);
dp[0].al.add(nums[0]);
// Operation similar to LIS
for (int i = 1; i < nums.length; i++) {
int max2 = 0;
int pos = i;
for (int j = 0; j < i; j++) {
if (nums[i] % nums[j] == 0 && max2 < dp[j].val) {
max2 = dp[j].val;
pos = j;
}
}
// max2 = 0, means no element exists which can divide the present element
if (max2 == 0) {
dp[i] = new Helper(max2 + 1);
dp[i].al.add(nums[i]);
} else {
dp[i] = new Helper(max2 + 1);
for (int val : dp[pos].al) {
dp[i].al.add(val);
}
dp[i].al.add(nums[i]);
}
if (max2 > max) {
max = max2;
index = i;
}
}
// Returning Largest Divisible Subset
return dp[index].al;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).