Problem
Given the root
of a binary search tree, and an integer k
, return the kth
smallest value (1-indexed) of all the values of the nodes in the tree.
Example 1:
Input: root = [3,1,4,null,2], k = 1
Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3
Output: 3
Constraints:
The number of nodes in the tree is
n
.1 <= k <= n <= 10^4
0 <= Node.val <= 10^4
Follow up: If the BST is modified often (i.e., we can do insert and delete operations) and you need to find the kth smallest frequently, how would you optimize?
Solution (Java)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int k;
private int count = 0;
private int val;
public int kthSmallest(TreeNode root, int k) {
this.k = k;
calculate(root);
return val;
}
private void calculate(TreeNode node) {
if (node.left == null && node.right == null) {
count++;
if (count == k) {
this.val = node.val;
}
return;
}
if (node.left != null) {
calculate(node.left);
}
count++;
if (count == k) {
this.val = node.val;
return;
}
if (node.right != null) {
calculate(node.right);
}
}
}
Solution (Javascript)
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} k
* @return {number}
*/
var kthSmallest = function(root, k) {
const nums = [];
inorder(root, nums);
return nums[k - 1];
};
function inorder(root, nums) {
if (root === null) return;
inorder(root.left, nums);
nums.push(root.val);
inorder(root.right, nums);
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).