Problem
You are given a tree with n
nodes numbered from 0
to n - 1
in the form of a parent array parent
where parent[i]
is the parent of ith
node. The root of the tree is node 0
. Find the kth
ancestor of a given node.
The kth
ancestor of a tree node is the kth
node in the path from that node to the root node.
Implement the TreeAncestor
class:
TreeAncestor(int n, int[] parent)
Initializes the object with the number of nodes in the tree and the parent array.int getKthAncestor(int node, int k)
return thekth
ancestor of the given nodenode
. If there is no such ancestor, return-1
.
Example 1:
Input
["TreeAncestor", "getKthAncestor", "getKthAncestor", "getKthAncestor"]
[[7, [-1, 0, 0, 1, 1, 2, 2]], [3, 1], [5, 2], [6, 3]]
Output
[null, 1, 0, -1]
Explanation
TreeAncestor treeAncestor = new TreeAncestor(7, [-1, 0, 0, 1, 1, 2, 2]);
treeAncestor.getKthAncestor(3, 1); // returns 1 which is the parent of 3
treeAncestor.getKthAncestor(5, 2); // returns 0 which is the grandparent of 5
treeAncestor.getKthAncestor(6, 3); // returns -1 because there is no such ancestor
Constraints:
1 <= k <= n <= 5 * 10^4
parent.length == n
parent[0] == -1
0 <= parent[i] < n
for all0 < i < n
0 <= node < n
There will be at most
5 * 10^4
queries.
Solution
class TreeAncestor {
private final List<Integer> steps;
private final Map<Integer, int[]> stepMap;
public TreeAncestor(int n, int[] parent) {
steps = new ArrayList<>();
stepMap = new HashMap<>();
steps.add(1);
stepMap.put(1, parent);
int stepBase = 10;
int step = stepBase;
while (step * 2 < n) {
int[] stepArr = new int[n];
int[] lastStepArr = stepMap.get(steps.get(steps.size() - 1));
for (int i = 0; i < n; i++) {
int cur = i;
for (int repeat = 0; repeat < stepBase && cur != -1; repeat++) {
cur = lastStepArr[cur];
}
stepArr[i] = cur;
}
steps.add(step);
stepMap.put(step, stepArr);
step *= stepBase;
}
}
public int getKthAncestor(int node, int k) {
int index = steps.size() - 1;
while (k > 0 && node != -1 && index >= 0) {
int step = steps.get(index);
int[] stepArr = stepMap.get(step);
while (k >= step && node != -1) {
node = stepArr[node];
k -= step;
}
index--;
}
return node;
}
}
/**
* Your TreeAncestor object will be instantiated and called as such:
* TreeAncestor obj = new TreeAncestor(n, parent);
* int param_1 = obj.getKthAncestor(node,k);
*/
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).