Problem
Given an array of integers arr
, you are initially positioned at the first index of the array.
In one step you can jump from index i
to index:
i + 1
where:i + 1 < arr.length
.i - 1
where:i - 1 >= 0
.j
where:arr[i] == arr[j]
andi != j
.
Return the minimum number of steps to reach the last index of the array.
Notice that you can not jump outside of the array at any time.
Example 1:
Input: arr = [100,-23,-23,404,100,23,23,23,3,404]
Output: 3
Explanation: You need three jumps from index 0 --> 4 --> 3 --> 9. Note that index 9 is the last index of the array.
Example 2:
Input: arr = [7]
Output: 0
Explanation: Start index is the last index. You do not need to jump.
Example 3:
Input: arr = [7,6,9,6,9,6,9,7]
Output: 1
Explanation: You can jump directly from index 0 to index 7 which is last index of the array.
Constraints:
1 <= arr.length <= 5 * 10^4
-10^8 <= arr[i] <= 10^8
Solution
class Solution {
public int minJumps(int[] arr) {
if (arr.length == 1) {
return 0;
}
int len = arr.length;
HashMap<Integer, List<Integer>> myHash = new HashMap<>();
int i = 0;
while (i < arr.length) {
List<Integer> curList = myHash.getOrDefault(arr[i], new ArrayList<>());
curList.add(i);
int tempNum = arr[i];
int tempIndex = i;
while (i < arr.length && arr[i] == tempNum) {
i++;
}
if (i != tempIndex + 1) {
curList.add(i - 1);
}
myHash.put(tempNum, curList);
}
Deque<Integer> myQueue = new LinkedList<>();
int step = 0;
myQueue.offerLast(0);
boolean[] visited = new boolean[arr.length];
visited[0] = true;
while (!myQueue.isEmpty()) {
int curCount = myQueue.size();
int j = 0;
while (j < curCount) {
int curIndex = myQueue.pollFirst();
if (curIndex == len - 1) {
return step;
}
if (curIndex + 1 < len && !visited[curIndex + 1]) {
myQueue.offerLast(curIndex + 1);
visited[curIndex + 1] = true;
}
if (curIndex - 1 >= 0 && !visited[curIndex - 1]) {
myQueue.offerLast(curIndex - 1);
visited[curIndex - 1] = true;
}
List<Integer> tempList = myHash.getOrDefault(arr[curIndex], new ArrayList<>());
for (Integer integer : tempList) {
if (!visited[integer]) {
myQueue.offerLast(integer);
visited[integer] = true;
}
}
myHash.remove(arr[curIndex]);
j++;
}
step++;
}
return step;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).