Problem
You are given two lists of closed intervals, firstList
and secondList
, where firstList[i] = [starti, endi]
and secondList[j] = [startj, endj]
. Each list of intervals is pairwise disjoint and in sorted order.
Return the intersection of these two interval lists.
A closed interval [a, b]
(with a <= b
) denotes the set of real numbers x
with a <= x <= b
.
The intersection of two closed intervals is a set of real numbers that are either empty or represented as a closed interval. For example, the intersection of [1, 3]
and [2, 4]
is [2, 3]
.
Example 1:
Input: firstList = [[0,2],[5,10],[13,23],[24,25]], secondList = [[1,5],[8,12],[15,24],[25,26]]
Output: [[1,2],[5,5],[8,10],[15,23],[24,24],[25,25]]
Example 2:
Input: firstList = [[1,3],[5,9]], secondList = []
Output: []
Constraints:
0 <= firstList.length, secondList.length <= 1000
firstList.length + secondList.length >= 1
0 <= starti < endi <= 10^9
endi < starti+1
0 <= startj < endj <= 10^9
endj < startj+1
Solution (Java)
class Solution {
public int[][] intervalIntersection(int[][] firstList, int[][] secondList) {
ArrayList<int[]> list = new ArrayList<>();
int i = 0;
int j = 0;
while (i < firstList.length && j < secondList.length) {
int start = Math.max(firstList[i][0], secondList[j][0]);
int end = Math.min(firstList[i][1], secondList[j][1]);
if (start <= end) {
list.add(new int[] {start, end});
}
if (firstList[i][1] > end) {
j++;
} else {
i++;
}
}
return list.toArray(new int[0][]);
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).