Problem
Given an integer n
, break it into the sum of k
positive integers, where k >= 2
, and maximize the product of those integers.
Return the maximum product you can get.
Example 1:
Input: n = 2
Output: 1
Explanation: 2 = 1 + 1, 1 × 1 = 1.
Example 2:
Input: n = 10
Output: 36
Explanation: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36.
Constraints:
2 <= n <= 58
Solution
class Solution {
private int[] arr;
public int integerBreak(int n) {
arr = new int[n + 1];
arr[2] = 1;
// only case involve with 1 other than 2 is 3
return n == 3 ? 2 : dp(n);
}
private int dp(int n) {
if (n <= 2) {
return arr[2];
} else if (arr[n] != 0) {
return arr[n];
} else {
int prod = 1;
for (int i = 2; i <= n; i++) {
prod = Math.max(prod, i * dp(n - i));
}
arr[n] = prod;
}
return arr[n];
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).