Problem
You are given two 0-indexed arrays nums1
and nums2
and a 2D array queries
of queries. There are three types of queries:
For a query of type 1,
queries[i] = [1, l, r]
. Flip the values from0
to1
and from1
to0
innums1
from indexl
to indexr
. Bothl
andr
are 0-indexed.For a query of type 2,
queries[i] = [2, p, 0]
. For every index0 <= i < n
, setnums2[i] = nums2[i] + nums1[i] * p
.For a query of type 3,
queries[i] = [3, 0, 0]
. Find the sum of the elements innums2
.
Return an array containing all the answers to the third type queries.
Example 1:
Input: nums1 = [1,0,1], nums2 = [0,0,0], queries = [[1,1,1],[2,1,0],[3,0,0]]
Output: [3]
Explanation: After the first query nums1 becomes [1,1,1]. After the second query, nums2 becomes [1,1,1], so the answer to the third query is 3. Thus, [3] is returned.
Example 2:
Input: nums1 = [1], nums2 = [5], queries = [[2,0,0],[3,0,0]]
Output: [5]
Explanation: After the first query, nums2 remains [5], so the answer to the second query is 5. Thus, [5] is returned.
Constraints:
1 <= nums1.length,nums2.length <= 105
nums1.length = nums2.length
1 <= queries.length <= 105
queries[i].length = 3
0 <= l <= r <= nums1.length - 1
0 <= p <= 106
0 <= nums1[i] <= 1
0 <= nums2[i] <= 109
Solution (Java)
class Solution {
public long[] handleQuery(int[] nums1, int[] nums2, int[][] queries) {
List<Long> ls = new ArrayList<>();
int n = nums1.length;
BitSet bs = new BitSet(n);
long sum = 0;
for(int i = 0;i < n;i++){
sum += 1L * nums2[i];
if(nums1[i] == 1) bs.set(i);
}
for(var q:queries){
if(q[0] == 1){
bs.flip(q[1],q[2] + 1);
}
else if(q[0] == 2){
sum += 1L * q[1] * bs.cardinality();
}
else ls.add(sum);
}
long ans[] = new long[ls.size()];
for(int i = 0;i < ans.length;i++){
ans[i] = ls.get(i);
}
return ans;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).