Problem
You are given an integer array nums
, and you can perform the following operation any number of times on nums
:
- Swap the positions of two elements
nums[i]
andnums[j]
ifgcd(nums[i], nums[j]) > 1
wheregcd(nums[i], nums[j])
is the greatest common divisor ofnums[i]
andnums[j]
.
Return true
**if it is possible to sort *nums
* in non-decreasing order using the above swap method, or false
otherwise.**
Example 1:
Input: nums = [7,21,3]
Output: true
Explanation: We can sort [7,21,3] by performing the following operations:
- Swap 7 and 21 because gcd(7,21) = 7. nums = [21,7,3]
- Swap 21 and 3 because gcd(21,3) = 3. nums = [3,7,21]
Example 2:
Input: nums = [5,2,6,2]
Output: false
Explanation: It is impossible to sort the array because 5 cannot be swapped with any other element.
Example 3:
Input: nums = [10,5,9,3,15]
Output: true
We can sort [10,5,9,3,15] by performing the following operations:
- Swap 10 and 15 because gcd(10,15) = 5. nums = [15,5,9,3,10]
- Swap 15 and 3 because gcd(15,3) = 3. nums = [3,5,9,15,10]
- Swap 10 and 15 because gcd(10,15) = 5. nums = [3,5,9,10,15]
Constraints:
1 <= nums.length <= 3 * 10^4
2 <= nums[i] <= 10^5
Solution
class Solution {
public boolean gcdSort(int[] nums) {
int[] sorted = nums.clone();
Arrays.sort(sorted);
int len = nums.length;
int max = sorted[len - 1];
// grouping tree child(index)->parent(value), index==value is root
int[] nodes = new int[max + 1];
for (int j : nums) {
nodes[j] = -1;
}
// value: <=0 not sieved, <0 leaf node, 0 or 1 not in nums, >1 grouped
for (int p = 2; p <= max / 2; p++) {
if (nodes[p] > 0) {
// sieved so not a prime number.
continue;
}
// p is now a prime number, set self as root.
nodes[p] = p;
int group = p;
int num = p + p;
while (num <= max) {
int existing = nodes[num];
if (existing < 0) {
// 1st hit, set group
nodes[num] = group;
} else if (existing <= 1) {
// value doesn't exist in nums
nodes[num] = 1;
} else if ((existing = root(nodes, existing)) < group) {
nodes[group] = existing;
group = existing;
} else {
nodes[existing] = group;
}
num += p;
}
}
for (int i = 0; i < len; i++) {
if (root(nodes, nums[i]) != root(nodes, (sorted[i]))) {
return false;
}
}
return true;
}
private static int root(final int[] nodes, int num) {
int group;
while ((group = nodes[num]) > 0 && group != num) {
num = group;
}
return num;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).